Amyotrophic lateral sclerosis: characteristics of the immunophenotype of hematopoietic precursor cells as a potential biomarker for early diagnostics of fatal disease



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Amyotrophic lateral sclerosis also known as motor neuron disease is a fatal neurodegenerative disease that manifests by degeneration of motor neurons, hypotrophy and atrophy of the muscles. The causes and pathogenesis of amyotrophic lateral sclerosis are not clear so far, the effective therapy is absent. Amyotrophic lateral sclerosis is diagnosed by clinical and neurophysiologic examination and only when over 80% of motor neurons are dead. The multiparameter flow cytometry was used to evaluate the expression of HLA-DR, CD38, CD117, CD13, CD33, CD56, CD90, CD45, CD10, CD71 in 86 samples of the mobilized hematopoietic stem cells from 54 amyotrophic lateral sclerosis cases and in 61 samples of mobilized hematopoietic stem cells from 54 healthy donors. The analysis showed differences in the hematopoietic stem cells subpopulations of amyotrophic lateral sclerosis donors as compared to those of healthy donors and allowed for the introduction of the notion of the amyotrophic lateral sclerosis-specific immu-nophenotypic profile of hematopoietic stem cells membrane antigens. The profile allows for verification of neurospecific immune insufficiency at the level of progenitor cells of the bone marrow and diagnostics of the family and sporadic amyotrophic lateral sclerosis in a molecular-biological way at the earliest stage before clinical manifestation of the disease. We suppose that the amyotrophic lateral sclerosis makes its debut as the disease of hematopoietic stem cells and manifests as pathologic changes at the level of hematopoietic stem cells genome and proteome that are represented in the subpopulation composition of hematopoietic stem cells and their immunophenotypic characteristics, becoming the cause of genetically determined genuine autoimmune origin of the disease so that the motor neuron disease manifests only in the end. However, further research with larger samples and experimental check of the evidence is required.

Full Text

Restricted Access

About the authors

A. S Bryukhovetskiy

Central Clinical Hospital of the RAS; CJSC “NeuroVita" Clinic

Email: neurovita-as@mail.ru

L. Y Grivtsova

A.F. Tsyb Medical Radiological Research Center, the branch of NMRRC

References

  1. Васенина Е.Е., Трусова Н.А., Ганькина О.А. и соавт. Комбинированная терапия болезни Альцгеймера. Современная терапия в психиатрии и неврологии 2013; 2: 10-4.
  2. Centers for Disease Control and Prevention. Alzheimer's Disease and Healthy Aging, https://www.cdc.gov/aging/aginginfo/alzheimers.htm.
  3. Huang H., Raisman G., Sanberg P.R. et al., editors. Neurorestoratology. Volume 2: Clinical Progress of Neurorestoratology. New York: Nova Science Publishers; 2015.
  4. Завалашин И.А., ред. Боковой амиотрофический склероз. Москва: ГЭОТАРМЕДИА; 2009
  5. Штульман Д.Р. Боковой амиотрофический склероз. В: Яхно Н.Н., ред. Болезни нервной системы. Москва: Медицина; 2005. т. 1, с. 649-58
  6. Висурханова С.А., Жуанышева Э.М., Мустафина Р.М. и др. Клинический случай шейной формы бокового амиотрофического склероза. В: Сборник статей по материалам XII международной научно-практической конференции «Научный форум: Медицина, биология и химия». Москва: МЦНО; 2018; 4(12): 43-50
  7. Хондкариан О.А. Боковой амиотрофический склероз. Москва: Медгиз; 1957
  8. Bourke S.C., Bullock R.E., Williams T._. et al. Noninvasive ventilation in A_S: indications and effect on quality of life. Neurology 2003; 61(2): 171-7.
  9. Bourke S.C., Tomlinson M., Williams T._. et al. Effects of non-invasive ventilation on survival and quality of life in patients with amyotrophic lateral sclerosis: a randomised controlled trial. Lancet Neurol. 2006; 5(2): 140-7.
  10. Ng _., Talman P., Khan F. Motor neuron disease: disability profile and service needs in an Australian cohort. Int. J. Rehabil. Res. 2011; 34(2): 151-9.
  11. Dion P.A., Daoud H., Rouleau G.A. Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nature Reviews Genetics 2009; 10(11): 769-82.
  12. Егоркина О.В., Гапонов И.К. Клинический подход к лечению нейродегенеративных заболеваний с деменцией. Междунар. неврол. журн. 2007; 1: 111-7.
  13. Брюховецкий А.С., Хотимченко (O.C. Стволовые клетки и регенеративная медицина в лечении нервных болезней. Том I. Теоретические, фундаментальные и общие аспекты применения стволовых клеток и технологий регенеративной медицины в лечении нервных болезней: руководство для врачей. Владивосток: Дальнаука; 2018
  14. Chew J., Gendron T.F., Prudencio M. et al. Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science 2015; 348(6239): 1151-4.
  15. Haramati S., Chapnik E., Sztainberg Y. et al. miRNA malfunction causes spinal motor neuron disease. PNAS USA 2010; 107: 1311-6.
  16. Rosen D.R., Siddique T., Patterson D. et al. Mutations in Cu/ Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362(6415): 59-62.
  17. Deng J., Yang M., Chen Y. et al. FUS interacts with HSP60 to promote mitochondrial damage. PLoS Genet. 2015; 11(9): e1005357.
  18. Yu Y., Chi B., Xia W. et al. U1 snRNP is mislocalized in ALS patient fibroblasts bearing NLS mutations in FUS and is required for motor neuron outgrowth in zebrafish. Nucleic Acids Res. 2015; 43(6): 3208-18.
  19. Highley J.R., Kirby J., Jansweijer J.A. et al. Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motorneurones. Neuropathol. Appl. Neurobiol. 2014; 40(6): 670-85.
  20. Aulas A., Vande Velde C. Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS? Front Cell Neurosci. 2015; 9: 423.
  21. Riley J., Glass J., Feldman E.L. et al. Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I trial, cervical microinjection, and final surgical safety outcomes. Neurosurgery 2014; 74(1): 77-87.
  22. Gordon P.H. Amyotrophic lateral sclerosis: an update for 2013 clinical features, pathophysiology, management and therapeutic trials. Aging Dis. 2013; 4(5): 295-310.
  23. Haverkamp L.J., Appel V., Appel S.H. Natural history of amyotrophic lateral sclerosis in a database population. Validation of a scoring system and a model for survival prediction. Brain 1995; 118(Pt 3): 707-19.
  24. Guegan C., Przedborski S. Programmed cell death in amyotrophic lateral sclerosis. J. Clin. Invest. 2003; 111(2): 153-61.
  25. Radunovic A., Mitsumoto H., Leigh P.N. Clinical care of patients with amyotrophic lateral sclerosis. Lancet Neurology 2007; 6(10): 913-25.
  26. Pasinelli P., Houseweart M.K., Brown R.H. Jr. et al. Caspase-1 and -3 are sequentially activated in motor neuron death in Cu, Zn superoxide dismutase-mediated familial amyotrophic lateral sclerosis. PNAS USA 2000; 97(25): 1390-6.
  27. Брюховецкий А.С., Хотимченко Ю.С., Хунюнь Хуанг и др. Стволовые клетки и регенеративная медицина в лечении нервных болезней Том II. Клинические аспекты применения стволовых клеток и технологий регенеративной медицины при некоторых заболеваниях и повреждениях центральной нервной системы. Владивосток: Дальнаука; 2018.
  28. Rosenberg S.A. Cell transfer immunotherapy for metastatic solid cancer - what clinicians need to know. Nature Rev. Clin. Oncol. 2011; 8(10): 577-85.
  29. Qi H., Liu S., Guo C. et al. Role of annexin A6 in cancer. Oncol. Lett. 2015; 10(4): 1947-52.
  30. Pasinelli P., Brown R.H. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat. Rev. Neurosci. 2006; 7(9): 710-23.
  31. Buratti E., Baralle F.E. The molecular links between TDP-43 dysfunction and neurodegeneration. Advances in Genetics 2009; 66: 1-34.
  32. Bryukhovetskiy A.S., Bryukhovetskiy I.S. Сytoregulatory therapy of brain glial tumors. In: Proceedings of the XXth World Congress of Neurology; 2011 Nov 12-17; Marrakesh, Morocco; 2011. p. 49.
  33. Rose J.A., Erzuram S., Asosingh K. Biology and flow cytometry of pro-angiogenic hematopoietic progenitor cells. Cytometry A 2015; 87(1): 5-19.
  34. Morita Y., Ema H., Nakauchi H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J. Exp. Med. 2010; 207: 1173-82.
  35. Гривцова Л.Ю., Тупицын Н.Н. Мобилизованные стволовые кроветворные клетки: аутологичная и аллогенная трансплантация в онкологической практике. Иммунология гемопоэза 2017; 1: 3-63.
  36. Frolov A.A., Bryukhovetskiy A.S. Effect of hematopoietic autologous stem cell transplantation to the chronically injured human spinal cord evaluated by motor and somatosensory evoked potentials methods. Cell Transplantation 2012; 21 Suppl 1: 49-55.
  37. Милькина Е.В., Мищенко П.В., Зайцев С.В. и др. Особенности взаимодействия между гемопоэтическими стволовыми и опухолевыми клетками различных линий in vitro. Гены и клетки 2016; 11(3): 63-71.
  38. Брюховецкий А.С. Клиническая онкопротеомика: протеом-основанная персонифицированная противоопухолевая клеточная терапия. Москва: Полиграф Плюс; 2013
  39. Брюховецкий И.С., Мищенко П.В., Брюховецкий А.С. и др. Взаимодействие гемопоэтических стволовых и опухолевых клеток in vitro. Тихоокеанский медицинский журнал 2014; 4: 31-7

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies