Gene-activated hydrogels in regenerative medicine



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Hydrogels capable to optimize reparative regeneration and delivere biologically active components (drugs, cells, growth factors, gene constructs) in the implantation area are attracting increasing attention of developers due to high potential effectiveness of these medical devices and compliance of the approach with well-known medical trend - minimally invasive technologies. Hydrogels containing gene constructs have become especially relevant for clinical practice in the territory of the Eurasian Customs Union after gen-therapeutic drug and the first gene-activated bone substitute were registered in Russia. This review describes the main directions in development of gene-activated hydrogels divided into two categories: primitive and optimized ("smart”-hydrogels). In the case hydrogel scaffolds provide passive delivery of gene constructs, while the latter facilitate gene constructs to realize their mechanism of action.

Full Text

Restricted Access

About the authors

I. Y Bozo

Research Institute of General Pathology and Pathophysiology; A.I. Burnazyana Federal Medical Biophysical Center, FMBA of Russia; Histograft, LLC

Email: bozo.ilya@gmail.com

A. I Bilyalov

Kazan (Volga Region] Federal University

M. O Mavlikeev

Research Institute of General Pathology and Pathophysiology

R. V Deev

I.P. Pavlov Ryazan State Medical University; Institute of Human Stem Cells, PJSC

References

  1. Tu Y., Chen N., Li C., et al. Advances in Injectable Self-healing Biomedical Hydrogels ET. AL. Advances in Injectable Self-healing Biomedical Hydrogels. Acta. Biomater. 2019; 19: 457-9.
  2. Narayanaswamy R., Torchilin V.P. Hydrogels and Their Applications in Targeted Drug Delivery. Molecules 2019; 24(3): 603.
  3. Cheon L., Sang, I., Keun K., et al. Hydrogels for Delivery of Bioactive Agents: A Historical Perspective. Adv. Drug Deliv. Rev. 2013; 65(1): 17-20
  4. Wichterle O., Lim D. Hydrophilic gels for biological use. Nature 1960; 185: 117-8.
  5. John A.H., Rui C., Theun van Veen., et al. Hydrogels for tissue engineering and regenerative medicine. J. Mater. Chem. B 2014; 2: 5319-8.
  6. Bhatnagar D., Aneel K., Marcia S., et al. Biomineralization on enzymatically cross-linked gelatin hydrogels in the absence of dexamethasone. Journal of Materials Chemistry B 2015; 3(26): 5210-9
  7. Campoccia D.R., Doherty P., Radice M., et al. Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 1998; 19(23): 2101-7.
  8. Prestwich G.D., Marecak D., Marecek J., et al. Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. J. Control Release 1998; 53(3): 93-99
  9. Lee K., Mooney D. Hydrogels for tissue engineering. Chemistry Review 1998; 53(1): 93-97.
  10. Grant G.T., Morris E., Rees D., et al. Biological interactions between polysaccharides and divalent cations - egg-box model. FEBS. Lett. 1993; 32: 195-8
  11. Tang X., Bruce J. Chemical cross-linking for protein-protein interaction studies. Methods Mol. Biol. 2009; 492: 283-3.
  12. Watanabe T., Ohtsuka A., Murase N., et al. NMR studies on water and polymer diffusion in dextran gels. Influence of potassium ions on microstructure formation and gelation mechanism. Magnetic Resonance In Medicine 1996; 35(5): 697-5.
  13. Hennink W.E., Van Nostrum C.F. Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews 2011; 64: 223-6.
  14. Nayak S.E., Lyon L. Soft nanotechnology with soft nanoparticles. Angewandte. Chemie. International Edition 2005; 44(47): 7686-8.
  15. Deev R.V., Drobyshev A., Bozo I., et al. Ordinary and activated bone grafts: applied classification and the main features. BioMed. Research International 2015; 19.
  16. Li J., Mooney D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016; 1: 1-17.
  17. Esmaiel J. Hydrogels for Cell Delivery. Gels 2018; 4(3): 58.
  18. Silva A.A., Richard C., Bessodes M., et al. Growth Factor Delivery Approaches in Hydrogels. Biomacromolecules 2009; 10: 9-18.
  19. Jin H.L. Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomater. Res. 2018; 22: 27.
  20. Xin B., Mingzhu G., Sahla S., et al. Bioactive hydrogels for bone regeneration. Bioact. Mater. 2018; 3(4): 401-17.
  21. Luo Y., Wei X., Huang P. 3D bioprinting of hydrogel-based biomi-metic microenvironments. J. Biomed. Mater. Res. B. Appl. Biomater. 2018; 13: 34-40.
  22. Kenneth L. Viral Vectors in Gene Therapy. Diseases 2018; 6(2): 42.
  23. Григорян А.С., Шевченко К.Г. Возможные молекулярные механизмы функционирования плазмидных конструкций, содержащих ген VEGF. Клеточная трансплантология и тканевая инженерия 2011; 6(3): 24-8
  24. Oh E., Oh J.E., Hong J., et al. Optimized biodegradable polymeric reservoir-mediated local and sustained co-delivery of dendritic cells and oncolytic adenovirus co-expressing IL-12 and GM-CSF for cancer immunotherapy. J. Control Release 2017; 259: 115-27.
  25. Sepantafar M., Maheronnaghsh R., Mohammadi H. Engineered Hydrogels in Cancer Therapy and Diagnosis. Trends Biotechnol. 2017; 35(11): 1074-87.
  26. Gianluca T., Arianna De Mori., Antero Oliveira., et al. Composite Hydrogels for Bone Regeneration. Materials (Basel) 2016; 9(4): 267.
  27. Komatsu K., Shibata T., Shimada A., et al. Cationized gelatin hydrogels mixed with plasmid DNA induce stronger and more sustained gene expression than atelocollagen at calvarial bone defects in vivo. J. Biomater. Sci. Polym. Ed. 2016; 27(5): 419-30.
  28. Mulder G., Tallis A.J., Marshall V.T., et al. Treatment of nonhealing diabetic foot ulcers with a platelet-derived growth factor gene-activated matrix (GAM501): results of a phase 1/2 trial. Wound Repair Regen. 2009; 17(6): 772-9.
  29. Blume P., Driver V.R., Tallis A.J., et al. Formulated collagen gel accelerates healing rate immediately after application in patients with diabetic neuropathic foot ulcers. Wound Repair Regen. 2011; 19(3): 302-8.
  30. Rabbany S.Y., Pastore J., Yamamoto M., et al. Continuous delivery of stromal cell-derived factor-1 from alginate scaffolds accelerates wound healing. Cell Transplant 2010; 19(4): 399-408.
  31. Stilhano R.S., Madrigal J.L., Wong K., et al. Injectable alginate hydrogel for enhanced spatiotemporal control of lentivector delivery in murine skeletal muscle. J. Control Release 2016; 10: 237:42-9.
  32. Wegman F., Bijenhof A., Schuijff L., et al. Osteogenic differentiation as a result of BMP-2 plasmid DNA based gene therapy in vitro and in vivo. Eur. Cell Mater. 2011; 15(21): 230-42.
  33. Kong H.J., Kim E.S., Huang Y.C., et al. Design of biodegradable hydrogel for the local and sustained delivery of angiogenic plasmid DNA. Pharm Res. 2008; 25(5):1230-8.
  34. Vaughan E.E., DeGiulio J., Dean D. Intracellular trafficking of plasmids for gene therapy: Mechanisms of cytoplasmic movement and nuclear import. Curr. Gene Ther. 2006; 6: 671-81.
  35. Mesika A., Kiss V., Brumfeld V., et al. Enhanced intracellular mobility and nuclear accumulation of DNA plasmids associated with a karyophilic protein. Hum. Gene Ther. 2005; 16: 200-208.
  36. Haiqing Bai., Gillian M., Schiralli Lester., et al. Cytoplasmic transport and nuclear import of plasmid DNA. Biosci. Rep. 2017; 37(6): 15-30.
  37. Li Z., Guan J. Thermosensitive hydrogels for drug delivery. Expert Opinion on Drug Delivery 2011; 8(8): 991-1007.
  38. Mastronardi E., Foster A., Zhang X., et al. Smart materials based on DNA aptamers: Taking aptasensing to the next level. Sensors 2014; 14: 3156-71.
  39. Soppimath K., Aminabhavi T., Dave A., et al. Stimulus-responsive “smart” hydrogels as novel drug delivery systems. Drug Dev. Ind. Pharm 2002; 28(8): 957-74.
  40. Wieland J.A., Houchin-Ray T.L., Shea L.D. Non-viral vector delivery from PEG-hyaluronic acid hydrogels. J. Control Release 2007; 120(3): 233-41.
  41. Klumb L.A., Horbett T. Design of insulin delivery devices based on glucose sensitive membranes. J. Control. Release 1992; 18: 59-80.
  42. Hu C.H., Zhang X., Zhang L., et al. Temperature- and pH-sensitive hydrogels to immobilize heparin-modified pei/DNA complexes for sustained gene delivery. J. Mater. Chem. 2009; 19: 8982-9.
  43. Li D.D., Pan J.F., Ji Q.X., et al. Characterization and cytocompat-ibility of thermosensitive hydrogel embedded with chitosan nanoparticles for delivery of bone morphogenetic protein-2 plasmid DNA. J. Mater Sci. Mater. Med. 2016; 27(8): 134-8.
  44. Gojgini S., Tokatlian T., Segura T. Utilizing cellmatrix interactions to modulate gene transfer to stem cells inside hyaluronic acid hydrogels. Mol. Pharm. 2011; 8(5): 1582.
  45. Yourek G., Xin X., Reilly G., et al. Infiltration of mesenchymal stem cells into PEGDA hydrogel. Biomed. Mater. Eng. 2014; 24(5): 1803-15.
  46. Determan M., Soenke S., Thiyagarajan P., et al. Synthesis and characterization of temperature and pH responsive pentablock copolymers. Macromolecules 2004; 46(18): 6933-46.
  47. Madl C.M., Keeney M., Li X. Co-release of cells and polymeric nanoparticles from sacrificial microfibers enhances nonviral gene delivery inside 3d hydrogels. Tissue Eng. Part. C. Methods 2014; 20(10): 798-805.
  48. Shepard J.A., Virani F., Goodman A., et al. Hydrogel macroporosity and the prolongation of transgene expression and the enhancement of angio-genesis. Biomaterials 2012; 33: 741.
  49. Tokatlian T., Cam C., Segura T. Non-viral DNA delivery from porous hyaluronic acid hydrogels in mice. Biomaterials 2014; 35(2): 825-35.
  50. Shin S., Shea L.D. Lentivirus immobilization to nanoparticles for enhanced and localized delivery from hydrogels. Mol. Ther. 2010; 18(4): 700-6.
  51. Zhang Y., Zhou Z., Zhu X., et al. A smart gene delivery platform: Cationic oligomer. Eur. J. Pharm Sci. 2017; 105: 33-40.
  52. Rafieei A., Riazi-Rad F., Alimohammadian M.H., et al. Hydrogel nanoparticle encapsulated plasmid as a suitable gene delivery system. Tsitol. Genet. 2015; 49(2):16-20.
  53. Mashal M., Attia N., Soto-Sanchez C., et al. Non-viral vectors based on cationic niosomes as efficient gene delivery vehicles to central nervous system cells into the brain. Int. J. Pharm. 2018; 552(2): 48-55.
  54. Pack D.W., Hoffman A., Pun S., et al. Design and development of polymers for gene delivery. Nat. Rev. Drug. Discov. 2005; 4: 581-93.
  55. Akinc A., Thomas M., Klibanov A., et al. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene. Med. 2005; 7: 657-63.
  56. Sonawane N.D., Szoka F., Verkman A. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem. 2003; 278: 44826-31.
  57. Lei Y., Rahim M., Ng Q., et al. Hyaluronic acid and fibrin hydrogels with concentrated DNA/pEi polyplexes for local gene delivery. Journal of Controlled Release 2011; 153(3): 255-61.
  58. Umebayashi M., Sumita Y., Kawai Y., et al. Gene-Activated Matrix Comprised of Atelocollagen and Plasmid DNA Encoding BMP4 or Runx2 Promotes Rat Cranial Bone Augmentation. Biores. Open Access 2015; 4(1): 164-74.
  59. Gonzalez-Fernandez T., Tierney E.G., Cunniffe G.M., et al. Gene Delivery of TGF-p3 and BMP2 in an MSC-Laden Alginate Hydrogel for Articular Cartilage and Endochondral Bone Tissue Engineering. Tissue Eng. Part A 2016; 22(9-10): 776-87.
  60. Wegman F., Geuze R.E. van der Helm Y.J., et al. Gene delivery of bone morphogenetic protein-2 plasmid DNA promotes bone formation in a large animal model. J. Tissue Eng. Regen. Med. 2014; 8(10): 763-70.
  61. Shin S., Shea L.D. Lentivirus immobilization to nanoparticles for enhanced and localized delivery from hydrogels. Mol. Ther. 2010; 18(4): 700-6.
  62. Balmayor E.R., van Griensven M. Gene therapy for bone engineering. Front Bioeng. Biotechnol. 2015; 3: 9.
  63. Sonnet C., Simpson C.L., Olabisi R.M., et al. Rapid healing of femoral defects in rats with low dose sustained BMP2 expression from PEGDA hydrogel microspheres. J. Orthop. Res. 2013; 31: 1597-604.
  64. Червяков Ю.В., Староверов И.Н., Власенко О.Н., Бозо И.Я., Исаев А.А., Деев Р.В. Пятилетние результаты лечения больных хронической ишемией нижних конечностей с использованием генной терапии. Ангиология и сосудистая хирургия 2016; 22(4): 38-45.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies