A comparative analysis of cultivation techniques of epithelial stem cells of cornea and creation of biomedical cell product (biocomposite) on the basis biocompatible matrix and stem cells
- Authors: Kvacheva Z.B1, Vasilevich I.B1, Chekina A.Y2, Marchenko L.N2, Dzhumova M.F2, Pinchuk C.V.1, Fedulov A.S2, Volotovski I.D1
-
Affiliations:
- Institute of Biophysics and Cell Engineering of NAS of Belarus
- Belarus State Medical University
- Issue: Vol 14, No 4 (2019)
- Pages: 29-34
- Section: Articles
- URL: https://genescells.ru/2313-1829/article/view/122193
- DOI: https://doi.org/10.23868/201912029
Cite item
Full Text
Abstract
Full Text

About the authors
Z. B Kvacheva
Institute of Biophysics and Cell Engineering of NAS of Belarus
Email: volotovski@yahoo.com
Minsk, Belarus
I. B Vasilevich
Institute of Biophysics and Cell Engineering of NAS of Belarus
Email: volotovski@yahoo.com
Minsk, Belarus
A. Y Chekina
Belarus State Medical University
Email: volotovski@yahoo.com
Minsk, Belarus
L. N Marchenko
Belarus State Medical University
Email: volotovski@yahoo.com
Minsk, Belarus
M. F Dzhumova
Belarus State Medical University
Email: volotovski@yahoo.com
Minsk, Belarus
C. V. Pinchuk
Institute of Biophysics and Cell Engineering of NAS of Belarus
Email: volotovski@yahoo.com
Minsk, Belarus
A. S Fedulov
Belarus State Medical University
Email: volotovski@yahoo.com
Minsk, Belarus
I. D Volotovski
Institute of Biophysics and Cell Engineering of NAS of Belarus
Email: volotovski@yahoo.com
Minsk, Belarus
References
- Scheffer C.G., Tseng M.D., Hua He. et al. Niche regulation of limbal epithelial stem cells: relationship between inflammation and regeneration. Ocul. Surf. 2016; 14(2): 100-12.
- Ahmad S. Concise review: limbal stem cell deficiency, dysfunction and distress. Stem Cells Transl. Med. 2012; 1(2): 110-5.
- Haagdorens M., Van Acker S.I., Van Gerwen V. et al. Limbal stem cell deficiency: current treatment options and emerging therapies. Stem Cells Int. 2016; 2016: 9798374.
- Branch M.J., Hashmani K., Dhillon P. et al. Mesenchymal stem cells in the human corneal limbal stroma. Invest. Ophthalmol. Vis. Sci. 2012; 53(9): 5109-16.
- Ghoubay-Benallaoua D., de Sousa C., Martos R. et al. Easy xeno-free and feeder-free method for isolating and growing limbal stromal and epithelial stem cells of the human cornea. PloS One 2017; 12(11): e0188398.
- Truong T.T., Huynh K., Nakatsu M.N. et al. SSEA4 is a potential negative marker for the enrichment of human corneal epithelial stem/progenitor cells. Invest. Ophthalmol. Vis. Sci. 2011; 52: 6315-20.
- Ksander B.R., Kolovou P.E., Wilson B.J. et al. ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature 2014; 511(7509): 353-7.
- Szabo D.J., Noer A., Nagymihaly R. et al. Long-term cultures of human cornea limbal explants form 3D structures ex vivo - implications for tissue engineering and clinical applications. PLoS One 2015; 10: e0143053.
- Vazirani J., Ali M.H., Sharma N. et al. Autologous simple limbal epithelial transplantation for unilateral limbal stem cell deficiency: multicentre results. Br. J. Ophthalmol. 2016; 100(10): 1416-20.
- Понятовская А.П., Коротченко С.А., Давыденко Д.В. и др. Трансплантат лимбальных эпителиальных стволовых клеток на биорезорбируемом носителе. Современные технологии в медицине 2017; 9(4): 44-50.
- Oie Y., Nishida K. Regenerative medicine for the cornea. Biomed. Res. Int. 2013; 2013: 428247.
- Dziasko M.A., Daniels J.T. Anatomical features and cell-cell interactions in the human limbal epithelial stem cell niche. Ocul. Surf. 2016; 14: 322-30.
- Pellegrini G., Traverso C.E., Franzi A.T. et al. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 1997; 349: 990-3.
- Xie H.T., Chen S.Y., Li G.G. et al. Isolation and expansion of human limbal stromal niche cells. Invest. Ophthalmol. Vis. Sci. 2012; 53: 279-86.
- Kethiri A.R., Basu S., Shukla S. et al. Optimizing the role of limbal explant size and source in determining the outcomes of limbal transplantation: An in vitro study. PLoS One 2017; 12: e0185623.
- Deshpande P., Notara M., Bullet N. et al. Development of a surface-modified contact lens for the transfer of cultured limbal epithelial cells to the cornea for ocular surface diseases. Tissue Eng. Part A 2009; 15(10): 2889-902.
- Pellegrini G., Rama P., Di Rocco A. et al. Concise review: hurdles in a successful example of limbal stem cell-based regenerative medicine. Stem Cells 2014; 32(1): 26-34.
- Shahdadfar A., Haug K., Pathak M. et al. Ex vivo expanded autologous limbal epithelial cells on amniotic membrane using a culture medium with human serum as single supplement. Exp. Eye Res. 2012; 97(1): 1-9.
- Freshney R. Ian. Culture of animal cells: a manual of basic technique and specialized applications. 7th ed. New Jersey: John Wiley & Sons; 2015.
- Laurenza A., Sutkowski E.M., Seamon K.B. Forskolin: a specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action. Trends Pharmacol. Sci. 1989; 10(11): 442-7.
- Menzel-Severing J., Kruse F.E., Scolotzer-Scherardt U. Stem cell-based therapy for corneal epithelial reconstruction: present and future. Can. J. Ophthalmol. 2013; 48(1): 13-21.
- Utheim T.P. Limbal epithelial cell therapy: past, present and future. In: Wright B., Connon C.J., editors. Соrneal Regenerative Medicine. Methods Mol. Biol. 2013; 1014: 3-43.
- Barrandon Y., Green H. Three clonal types of keratinocyte with different capacities for multiplication. PNAS USA 1987; 84(8): 2302-6.
- Ordonez P., Di Girolamo N. Limbal epithelial stem cells: role of the niche microenvironment. Stem Cells 2012; 30(2): 100-7.
- Stasi K., Goings D., Huang J. et al. Optimal isolation and xeno-free culture conditions for limbal stem cell function. Invest. Ophthamol. Vis. Sci. 2014; 55: 375-86.
- Wright B., Connon C.J. Corneal Regenerative Medicine. Methods and Protocols. New York: Springer; 2013.
- Koizumi N., Cooper L., Fullwood N.J. et al. An evaluation of cultivated corneal limbal epithelial cells, using cell suspension culture. Invest. Ophthalmol. Vis. Sci. 2002; 43: 2114-21.
