Nonmyeloablative bone marrow cells transplantation restores dystrophin synthesis in the muscles of MDX mice
- Authors: Sokolova A.V1, Timonina N.A2, Kravtsova V.V2, Krivoi I.I2, Skripkina N.S3, Kaminskaia E.V1, Mikhailov V.M1
-
Affiliations:
- Institute of Cytology Russian Academy of Science
- Saint Petersburg State University
- City clinical hospital № 31
- Issue: Vol 15, No 1 (2020)
- Pages: 37-44
- Section: Articles
- URL: https://genescells.ru/2313-1829/article/view/122041
- DOI: https://doi.org/10.23868/202003005
- ID: 122041
Cite item
Abstract
Full Text

About the authors
A. V Sokolova
Institute of Cytology Russian Academy of Science
Email: avsokolova@inbox.ru
NA. A Timonina
Saint Petersburg State University
V. V Kravtsova
Saint Petersburg State University
I. I Krivoi
Saint Petersburg State University
N. S Skripkina
City clinical hospital № 31
E. V Kaminskaia
Institute of Cytology Russian Academy of Science
V. M Mikhailov
Institute of Cytology Russian Academy of Science
References
- Min Y.L., Bassel-Duby R., Olson E.N. CRISPR Correction of Duchenne Muscular Dystrophy. Ann. Rev. Med. 2019; 70: 239-55.
- Collins C.A., Morgan J.E. Duchenne's muscular dystrophy: animal models used to investigate pathogenesis and develop therapeutic strategies. Int. J. Exp. Pathol. 2003; 84(4): 165-72.
- Dalkilic I., Kunkel L.M. Muscular dystrophies: genes to pathogenesis. Curr. Opin. Genet. Dev. 2003; 13(3): 231-8.
- Otto A., Coolins-Hooper H., Patel K. The origin, molecurlar regulation and therapeutic potencial of myogenic stem cell populations. J. of Anatomy 2009; 215: 477-97.
- Negroni E., Gidaro T., Bigot A. et al. Stem cells and muscle diseases: advances in cell therapy strategies. J. Neuropathology and Applied Neurobiology 2015; 41: 270-87.
- Hoffman E.P., Brown R.H. Jr., Kunkel L.M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 1987; 51(6): 919-28.
- Зайнитдинова М.И., Смирнихина С.А., Лавров А.В. и др. Геннотерапевтические подходы к лечению миодистрофии Дюшенна. Гены & Клетки 2019; XIV(4): 6-18.
- Bulfield G., Siller W.G., Wight P.A. et al. X chromosome-linked muscular dystrophy (mdx) in the mouse. PNAS USA 1984; 81(4): 1189-92.
- Sicinski P., Geng Y., Ryder-Cook A.S. et al. The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 1989; 244(4912): 1578-80.
- Kong J., Anderson J.E. Dystrophin is required for organizing large acetylcholine receptor aggregates. Brain Res. 1999; 839(2): 298-304.
- Minatel E., Neto H.S., Marques M.J. Acetylcholine receptors and neuronal nitric oxide synthase distribution at the neuromuscular junction of regenerated muscle fibers. Muscle Nerve 2001; 24: 410-6.
- Marques M.J., Pertille A., Carvalho C.L. et al. Acetylcholine receptor organization at the dystrophic extraocular muscle neuromuscular junction. Anat. Rec. (Hoboken) 2007; 290(7): 846-54.
- Соколова А.В., Зенин В.В., Михайлов В.М. Структура нейро-мышечных соединений и дифференцировка поперечно-полосатых мышечных волокон у мышей mdx после клеточной терапии стволовыми клетками костного мозга. Цитология 2010; 52(5): 399-406.
- Quaеttrocelli M., Cassano M., Crippa S. et al. Cell therapy strategies and improvements for muscular dystrophy. Cell Death and Differentiation 2010; 17: 1222-9.
- Wilschut K.J., Ling V.B., Bernstein H.S. Concise Review: Stem cell therapy for muscular dystrophies. Stem Cells Translational medicine 2012; 1(11): 833-42.
- Partridge T.A., Morgan J.E., Coulton G.R. et al. Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 1989; 337: 176-9.
- Siemionow M., Cwykiel J., Heydemann A. et al. Dystrophin expressing chimeric (DEC) human cells provide a potencial therapy for Duchenne muscular therapy. Stem Cell Reviews and reports 2018; 14: 370-84.
- Gussoni E., Soneoka Y., Strickland C.D. et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999; 401(6751): 390-4.
- Bittner R.E., Schofer C., Weipoltshammer K. et al. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat. Embryol. (Berl.) 1999; 199(5): 391-6.
- De Angelis L., Berghella L., Coletta M. et al. Skeletal Myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. The Journal of Cell Biology 1999; 147(4): 869-77.
- Torrente Y., Belicchi M., Sampaolesi M. et al. Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J. Clin. Invest. 2004; 114: 182-95.
- Peault B., Rudnicki M., Torrente Y. et al. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol. Ther. 2007; 15(5): 867-77.
- Galvez B.G., Sampaolesi M., Brunelli S. et al. Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. J. Cell Biol. 2006; 174(2): 231-43.
- Dellavalle A., Sampaolesi M., Tonlorenzi R. et al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat. Cell Biol. 2007; 9(3): 255-67.
- Farini A., Razini P., Erratico S. et al. Cell based therapy for Duchenne muscular dystrophy. J. Cell. Physiol. 2009; 221(3): 526-34.
- Szade K., Gulati G.S., Chan C.K.F. et al. Where hematopoietic stem cells live: The bone marrow niche. Antioxid. Redox Signal. 2018; 29(2): 191-204.
- Asahara T., Murohara T. Sullivan A. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-7.
- Kataoka K., Medina R.J., Kageyama T. et al. Participation of adult mouse bone marrow cells in reconstitution of skin. Am. J. Pathol. 2003; 163(4): 1227-31.
- Kale S., Karihaloo A., Clark P.R. et al. Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J. Clin. Invest. 2003; 112(1): 42-9.
- Hess D., Li L., Martin M. et al. Bone marrow-derived stem cells initiate pancreatic regeneration. Nat. Biotechnol. 2003L; 21(7): 763-70.
- Mezey E., Chandross K.J. Bone marrow: a possible alternative source of cells in the adult nervous system. Eur. J. Pharmacol. 2000; 405(1-3): 297-302.
- Mikhailov V.M. Life cycle of decidual cells. In: Jeon K.W., editor. A survey of cell biology. San Diego: Academic Press (an Elsevier Imprint); 2003. p. 2-63.
- Mikhailov V.M., Sokolova A.V., Serikov V.B. et al. Bone marrow stem cells repopulate thyroid regeneration in mice. Pathophysiology 2012; 19: 5-11.
- Alawadhi F., Du H., Cakmak H. et al. Bone Marrow-Derived Stem Cell (BMDSC) transplantation improves fertility in a murine model of Asher-man's syndrome. PLoS One 2014; 9(5): e96662.
- Ferrari G., Cusella-De Angelis G., Coletta M. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998; 279(5356): 1528-30.
- LaBarge M.A., Blau H.M. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 2002; 111(4): 589-601.
- Dreyfus P.A., Chretien F., Chazaud B. et al. Adult bone marrow-derived stem cells in muscle connective tissue and satellite cell niches. Am. J. Pathol. 2004; 164(3): 773-9.
- Михайлов В.М., Евтифеева Е.В., Сериков В.Б. и др. Участие стволовых клеток костного мозга в дифференцировке поперечнополосатых мышц мышей mdx. Цитология 2006; 48(5): 410-7.
- Wernig G., Jansen V., Schafer R. et al. The vast majority of bone-marrow-derived cells integrated into mdx muscle fibers are silent despite long-term engraftment.PNAS USA 2005; 102(33): 11852-7.
- Соколова А.В., Соколов Г.В., Михайлов В.М. Слабое комбинированное магнитное поле, настроенное на ион-параметрический резонанс для Ca2+, интенсифицирует синтез дистрофина в скелетных мышцах мышей mdx после клеточной терапии. Цитология 2016; 58 (2):150-5.
- Lucarelli G., Isgro A., Sodani P. et al. Hematopoietic stem cell transplantation in thalassemia and sickle cell anemia. Cold Spring Harb. Perspect. Med. 2012; 2(5): a011825.
- Hsieh M.M. A standard nonmyeloablative transplantation regimen for adults with sickle cell disease: Are we there Yet? Biol. blood marrow transplantation 2016; 22: 397-9.
- Полак Дж., Ван Норден С. Введение в иммуноцитохимию: современные методы и проблемы: Пер. с англ. Москва [СССР]: Мир; 1987
- Marques M.J., Taniguti A.P., Minatel E. et al. Nerve terminal contributes to acetylcholine receptor organization at the dystrophic neuromuscular junction of mdx mice. Anat. Rec. (Hoboken) 2007; 290(2): 181-7.
- Кравцова В.В., Михайлов В.М., Соколова А.В. и др. Восстановление электрогенеза скелетной мышцы после клеточной терапии миодистрофии у мышей mdx. Доклады Академии наук 2011; 441(2): 272-4.
- Mikhailov V.M., Sokolova A.V., Kravtsova V.V. et al. Non-myeloablative bone marrow stem cell transplantation for mdx mice myodystrophy therapy. J. Cell Sci. Ther. 2012; 3: 122.
- Соколова А.В. Усиление синтеза дистрофина и улучшение структуры нейромышечных соединений мутантных мышей mdx после трансплантации клеток костного мозга. В: Яблонский П.К., главный редактор. Фундам. наука клин. мед. Материалы XVI Всероссийской медико-биологической конференции молодых ученых (с международным участием); 2013 апрель 20; Санкт-Петербург, Россия. Санкт-Петербург: Издательский дом СПбГУ; 2013. стр. 379-80.
- Тимонина Н.А., Кравцова В.В., Михайлова Е.В. и др. Электрогенез концевых пластинок диафрагмы мышей mdx: эффект клеточной терапии. Вестник СПбГУ Сер. 3. 201 5; 3: 66-74
- Andrade J., Ge S., Symbatyan G. et al. Effects of sublethal irradiation on patterns of engraftment after murine bone marrow transplantation. Biol. Blood Marrow Transplant. 2011; 17(5): 608-19.
- Haddix S.G., Lee Y.I., Kornegay J.N. et al. Cycles of myofiber degeneration and regeneration lead to remodeling of the neuromuscular junction in two mammalian models of Duchenne muscular dystrophy. PLoS One 2018; 13(10): e0205926.
- Rafael J.A., Townsend E.R., Squire S.E. et al. Dystrophin and utrophin influence fiber type composition and post-synaptic membrane structure. Hum. Mol. Genet. 2000; 9: 1357-67.
- Banks G.B., Chamberlain J.S., Froehner S.C. Truncated dystrophins can influence neuromuscular synapse structure. Mol. Cell. Neurosci. 2009; 40: 433-41.
- Kong J., Yang L., Li Q. et al. The absence of dystrophin rather than muscle degeneration causes acetylcholine receptor cluster defects in dystrophic muscle. Neuroreport 2012; 23(2): 82-7.
- McClive P.J., Huang D., Morahan G. C57BL/6 and C57BL/10 inbred mouse strains differ at multiple loci on chromosome 4. Immunogenetics 1994; 39: 286-8.
- Kennelly K.P., Holmes T.M., Wallace D.M. et al. Early subretinal allograft rejection is characterized by innate immune activity. Cell Transplant. 2017; 26(6): 983-1000.
- Sampaolesi M., Blot S., D'Antona G. et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 2006; 444(7119): 574-9.
- van Putten M., Hulsker M., Young C. et al. Low dystrophin levels increase survival and improve muscle pathology and function in dystrophin/ utrophin double-knockout mice. FASEB J. 2013; 27(6): 2484-95.
- van der Pijl E.M., van Putten M., Niks E.H. et al. Low dystrophin levels are insufficient to normalize the neuromuscular synaptic abnormalities of mdx mice. Neuromuscul. Disord. 2018; 28(5): 427-42.
- Wells D.J. What is the level of dystrophin expression required for effective therapy of Duchenne muscular dystrophy? J. Muscle Res. Cell Motil. 2019; 40(2): 141-50.
- Ozdogu H., Boga C. Hematopoietic stem cell transplantation in adult sickle cell disease: problems and solution. Turk. J. Haematol. 2015; 32(3): 195-205.
- Pietzner J., Baer P.C., Duecker R.P. et al. Bone marrow transplantation improves the outcome of Atm-deficient mice through the migration of ANM-competent cells. Human mol. Genetics 2013, 22(3): 493-507
