Tay-Sachs disease: diagnostic, modeling and treatment approaches

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Tay-Sachs disease (OMIM 272800) belongs to the group of autosomal-recessive disorders, caused by p-hexosaminidase A (HexA) enzyme deficiency, resulting in GM2-ganglioside accumulation in nervous and other tissues of the body. Enzyme deficiency is caused by various mutations in HEXA gene. Clinical symptom severity depends on residual HexA enzymatic activity associated with some mutations. Currently, there is no effective treatment for Tay-Sachs disease. There are clinical reports of substrate reduction therapy, bone marrow or umbilical cord blood transplantation. However, the therapeutic efficacy of these methods remains insufficient to prevent aggravation of neurological symptoms in Tay-Sachs disease patients. Encouraging results were obtained using gene therapy to deliver wild-type genes encoding the а and p subunits of HexA. This review discusses the therapeutic strategies in Tay-Sachs disease treatment, as well as diagnostic methods and existing animal models to evaluate the effectiveness of new approaches for Tay-Sachs disease therapy.

Full Text

Restricted Access

About the authors

V. V Solovyeva

Kazan (Volga region) Federal University

A. A Shaimardanova

Kazan (Volga region) Federal University

D. S Chulpanova

Kazan (Volga region) Federal University

K. V Kitaeva

Kazan (Volga region) Federal University

A. A Rizvanov

Kazan (Volga region) Federal University

Email: rizvanov@gmail.com


  1. Семенова О.В., Клюшников С.А., Павлов Э.В. и др. Клинический случай болезни Тея-Сакса с поздним началом. Нервные болезни 2016; 3: 57-60
  2. Sandhoff K., Harzer K. Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis. J. Neurosci. 2013; 33(25): 10195-208.
  3. Мавлиханова А.А., Павлов В.Н., Ян Б. и др. Ганглиозиды и их значение в развитии и функционировании нервной системы. Медицинский вестник Башкортостана 2017; 12(4): 121-6
  4. Mahuran D.J. Biochemical consequences of mutations causing the GM2 gangliosidoses. Biochim. Biophys. Acta 1999; 1455(2-3): 105-38.
  5. Myerowitz R. Tay-Sachs disease-causing mutations and neutral polymorphisms in the Hex A gene. Hum. Mutat. 1997; 9(3): 195-208.
  6. Wada R., Tifft C.J., Proia R.L. Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation. PNAS USA 2000; 97(20): 10954-9.
  7. Myerowitz R., Lawson D., Mizukami H. et al. Molecular pathophysiology in Tay-Sachs and Sandhoff diseases as revealed by gene expression profiling. Hum. Mol. Genet. 2002; 11(11): 1343-50.
  8. Wu Y.P., Proia R.L. Deletion of macrophage-inflammatory protein 1 alpha retards neurodegeneration in Sandhoff disease mice. PNAS USA 2004; 101(22): 8425-30.
  9. Lew R.M., Burnett L., Proos A.L. et al. Tay-Sachs disease: current perspectives from Australia. Appl. Clin. Genet. 2015; 8: 19-25.
  10. Adam M.P., Ardinger H.H., Pagon R.A. et al., editors. Hexosaminidase A deficiency. Seattle (WA): University of Washington; 1999, https:// www.ncbi.nlm.nih.gov/books/NBK1218/.
  11. Osher E., Fattal-Valevski A., Sagie L. et al. Effect of cyclic, low dose pyrimethamine treatment in patients with late onset Tay Sachs: an open label, extended pilot study. Orphanet J. Rare Dis. 2015; 10: 45.
  12. Patterson M.C. Gangliosidoses. Handb. Clin. Neurol. 2013; 113: 1707-8.
  13. Cheema H.A., Waheed N., Saeed A. Unusual case of Juvenile Tay-Sachs disease. BMJ Case Rep. 2019; 12(9): 230140.
  14. Nestrasil I., Ahmed A., Utz J.M. et al. Distinct progression patterns of brain disease in infantile and juvenile gangliosidoses: Volumetric quantitative MRI study. Mol. Genet. Metab. 2018; 123(2): 97-104.
  15. Jarnes Utz J.R., Kim S., King K. et al. Infantile gangliosidoses: Mapping a timeline of clinical changes. Mol. Genet. Metab. 2017; 121(2): 170-9.
  16. Bley A.E., Giannikopoulos O.A., Hayden D. et al. Natural history of infantile G(M2) gangliosidosis. Pediatrics 2011; 128(5): e1233-41.
  17. Regier D.S., Proia R.L., D'Azzo A. et al. The GM1 and GM2 gangliosidoses: natural history and progress toward therapy. Pediatric Endocrinology Reviews 2016; 13 Suppl 1: 663-73.
  18. Maegawa G.H., Stockley T., Tropak M. et al. The natural history of juvenile or subacute GM2 gangliosidosis: 21 new cases and literature review of 134 previously reported. Pediatrics 2006; 118(5): e1550-62.
  19. Sandhoff K., Christomanou H. Biochemistry and genetics of gangliosidoses. Hum. Genet. 1979; 50(2): 107-43.
  20. Deik A., Saunders-Pullman R. Atypical presentation of late-onset Tay-Sachs disease. Muscle & Nerve 2014; 49(5): 768-71.
  21. Cachon-Gonzalez M.B., Wang S.Z., McNair R. et al. Gene transfer corrects acute GM2 gangliosidosis - potential therapeutic contribution of perivascular enzyme flow. Mol. Ther. 2012; 20(8): 1489-500.
  22. Zhang J., Chen H., Kornreich R. et al. Prenatal diagnosis of Tay-Sachs disease. Methods Mol. Biol. 2019; 1885: 233-50.
  23. Taniike M., Yamanaka S., Proia R.L. et al. Neuropathology of mice with targeted disruption of Hexa gene, a model of Tay-Sachs disease. Acta Neuropathol. 1995; 89(4): 296-304.
  24. Yuziuk J.A., Bertoni C., Beccari T. et al. Specificity of mouse GM2 activator protein and beta-N-acetylhexosaminidases A and B. Similarities and differences with their human counterparts in the catabolism of GM2. J. Biol. Chem. 1998; 273(1): 66-72.
  25. Seyrantepe V., Demir S.A., Timur Z.K. et al. Murine sialidase Neu3 facilitates GM2 degradation and bypass in mouse model of Tay-Sachs disease. Exp. Neurol. 2018; 299(Pt A): 26-41.
  26. Sango K., Yamanaka S., Hoffmann A. et al. Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nat. Genet. 1995; 11(2): 170-6.
  27. Phaneuf D., Wakamatsu N., Huang J.Q. et al. Dramatically different phenotypes in mouse models of human Tay-Sachs and Sandhoff diseases. Hum. Mol. Genet. 1996; 5(1): 1-14.
  28. Torres P.A., Zeng B.J., Porter B.F. et al. Tay-Sachs disease in Jacob sheep. Mol. Genet. Metab. 2010; 101(4): 357-63.
  29. Porter B.F., Lewis B.C., Edwards J.F. et al. Pathology of GM2 gangliosidosis in Jacob sheep. Vet. Pathol. 2011; 48(4): 807-13.
  30. Hayase T., Shimizu J., Goto T. et al. Unilaterally and rapidly progressing white matter lesion and elevated cytokines in a patient with Tay-Sachs disease. Brain Dev. 2010; 32(3): 244-7.
  31. Bembi B., Marchetti F., Guerci V.I. et al. Substrate reduction therapy in the infantile form of Tay-Sachs disease. Neurology 2006; 66(2): 278-80.
  32. Jacobs J.F., Willemsen M.A., Groot-Loonen J.J. et al. Allogeneic BMT followed by substrate reduction therapy in a child with subacute Tay-Sachs disease. Bone Marrow Transplant. 2005; 36(10): 925-6.
  33. Stepien K.M., Lum S.H., Wraith J.E. et al. Haematopoietic stem cell transplantation arrests the progression of neurodegenerative disease in late-onset Tay-Sachs disease. JlMD reports 2018; 41: 17-23.
  34. Platt F.M., Jeyakumar M., Andersson U. et al. Substrate reduction therapy in mouse models of the glycosphingolipidoses. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 2003; 358(1433): 947-54.
  35. Maegawa G.H., Banwell B.L., Blaser S. et al. Substrate reduction therapy in juvenile GM2 gangliosidosis. Mol. Genet. Metab. 2009; 98(1-2): 215-24.
  36. Boomkamp S.D., Rountree J.S., Neville D.C. et al. Lysosomal storage of oligosaccharide and glycosphingolipid in imino sugar treated cells. Glyco-conj. J. 2010; 27(3): 297-308.
  37. Barton N.W., Brady R.O., Dambrosia J.M. et al. Replacement therapy for inherited enzyme deficiency-macrophage-targeted glucocerebrosidase for Gaucher's disease. N. Engl. J. Med. 1991; 324(21): 1464-70.
  38. Connock M., Burls A., Frew E. et al. The clinical effectiveness and cost-effectiveness of enzyme replacement therapy for Gaucher's disease: a systematic review. Health Technology Assessment 2006; 10(24): iii-iv, ix-136.
  39. Eng C.M., Guffon N., Wilcox W.R. et al. Safety and efficacy of recombinant human alpha-galactosidase A replacement therapy in Fabry's disease. N. Engl. J. Med. 2001; 345(1): 9-16.
  40. Klinge L., Straub V., Neudorf U. et al. Enzyme replacement therapy in classical infantile pompe disease: results of a ten-month follow-up study. Neuropediatrics 2005; 36(1): 6-11.
  41. Wraith J.E., Clarke L.A., Beck M. et al. Enzyme replacement therapy for mucopolysaccharidosis I: a randomized, double-blinded, placebo-controlled, multinational study of recombinant human alpha-L-iduronidase (laronidase). J. Pediatr. 2004; 144(5): 581-8.
  42. Muenzer J., Lamsa J.C., Garcia A. et al. Enzyme replacement therapy in mucopolysaccharidosis type II (Hunter syndrome): a preliminary report. Acta Paediatr. 2002; 91(439): 98-9.
  43. Harmatz P., Whitley C.B., Waber L. et al. Enzyme replacement therapy in mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). J. Pediatr. 2004; 144(5): 574-80.
  44. Jakobkiewicz-Banecka J., Wegrzyn A., Wegrzyn G. Substrate deprivation therapy: a new hope for patients suffering from neuronopathic forms of inherited lysosomal storage diseases. J. Appl. Genet. 2007; 48(4): 383-8.
  45. Sorrentino N.C., D'Orsi L., Sambri I. et al. A highly secreted sulphami-dase engineered to cross the blood-brain barrier corrects brain lesions of mice with mucopolysaccharidoses type IIIA. EMBO Mol. Med. 2013; 5(5): 675-90.
  46. Tropak M.B., Yonekawa S., Karumuthil-Melethil S. et al. Construction of a hybrid beta-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo. Mol. Ther. Methods Clin. Dev. 2016; 3: 15057.
  47. Martin P.L., Carter S.L., Kernan N.A. et al. Results of the cord blood transplantation study (COBLT): outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with lysosomal and peroxisomal storage diseases. Biol. Blood Marrow Transplant. 2006; 12(2): 184-94.
  48. Galieva L.R., Mukhamedshina Y.O., Arkhipova S.S. et al. Human umbilical cord blood cell transplantation in neuroregenerative strategies. Front. Pharmacol. 2017; 8: 628.
  49. Guidotti J.E., Mignon A., Haase G. et al. Adenoviral gene therapy of the Tay-Sachs disease in hexosaminidase A-deficient knock-out mice. Hum. Mol. Genet. 1999; 8(5): 831-8.
  50. Nakamura T., Sato K., Hamada H. Reduction of natural adenovirus tropism to the liver by both ablation of fiber-coxsackievirus and adenovirus receptor interaction and use of replaceable short fiber. J. Virol. 2003; 77(4): 2512-21.
  51. Wolfe D., Goins W.F., Yamada M. et al. Engineering herpes simplex virus vectors for CNS applications. Exp. Neurol. 1999; 159(1): 34-46.
  52. Martino S., Marconi P., Tancini B. et al. A direct gene transfer strategy via brain internal capsule reverses the biochemical defect in Tay-Sachs disease. Hum. Mol. Genet. 2005; 14(15): 2113-23.
  53. Cachon-Gonzalez M.B., Wang S.Z., Lynch A. et al. Effective gene therapy in an authentic model of Tay-Sachs-related diseases. PNAS USA 2006; 103(27): 10373-8.
  54. Karumuthil-Melethil S., Nagabhushan Kalburgi S., Thompson P. et al. Novel vector design and hexosaminidase variant enabling self-complementary adeno-associated virus for the treatment of Tay-Sachs disease. Hum. Gene Ther. 2016; 27(7): 509-21.
  55. Osmon K.J., Woodley E., Thompson P. et al. Systemic gene transfer of a hexosaminidase variant using an scAAV9.47 vector corrects GM2 gangliosidosis in Sandhoff mice. Hum. Gene Ther. 2016; 27(7): 497-508.
  56. Gray-Edwards H.L., Randle A.N., Maitland S.A. et al. Adeno-Associ-ated Virus Gene Therapy in a Sheep Model of Tay-Sachs Disease. Hum. Gene Ther. 2018; 29(3): 312-26.
  57. Bradbury A.M., Cochran J.N., McCurdy V.J. et al. Therapeutic response in feline Sandhoff disease despite immunity to intracranial gene therapy. Mol. Ther. 2013; 21(7): 1306-15.
  58. Golebiowski D., van der Bom I.M.J., Kwon C.S. et al. Direct intracranial injection of AAVrh8 encoding monkey beta-N-acetylhexosaminidase causes neurotoxicity in the primate brain. Hum. Gene Ther. 2017; 28(6): 510-22.

Copyright (c) 2020 Eco-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 85657 от 21.07.2023 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies