Cell transplantation for COVID-19 treatment: transmission of stem stomal (mesenchimal) cells

Cite item


The review presents the modern concept of the pathogenesis of diffuse alveolar damage, including acute respiratory distress sYndrome in coronavirus infection. It has been established that the so-called "cytokine storm”, which consists in the increased release of substances that are biologically active against the vascular wall and effector cells, leading to the progressive damage to endotheliocytes and alveolocytes, the development of alveolar and interstitial pulmonary edema with fatal respiratory failure and coagulopathy. An important factor in interstitial aggression is the appearance of autoreactive clones of plasma cells, dissemination of virusinfected leucocytes throughout the body with the involvement of various organs and systems, which exacerbates multiple organ failure. A poor prognosis for patients, the likelihood of developing pulmonary fibrosis after infection, according to several researchers, can be corrected by cell therapy. Allogeneic multipotent mesenchymal stromal cells (mesenchymal stem cells) are considered as first-line therapeutic cells. The accumulated experience of preclinical experiments made it possible to urgently proceed to conduct clinical trials of the safety of their use in patients with ARDS and to search for optimal indications to obtain maximum benefits for patients after transplantation. The combined efforts of many research groups can lead to reliable information on the cell therapy benefit and the need to include it in the standards of treatment of patients with this extremely severe pathology.

Full Text

Restricted Access

About the authors

R. V Deev

I.I. Mechnikov North-Western State Medical University; Human Stem Cell Institute

Email: romdey@gmail.com
St. Petersburg, Russia; Moscow, Russia


  1. Gabutti G., d’Anchera E., Sandri F. et al. Coronavirus: Update Related to the Current Outbreak of COVID-19. Infect. Dis. Ther. 2020; 8.04. https://doi.org/10.1007/s40121-020-00295-5.
  2. Vital Surveillances: The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19). China CDC Weekly 2020; 2(8): 113-22.
  3. Wu Z., McGoogan J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in ChinaSummary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020; 323(13): 1239-42.
  4. Siordia J.A. Jr. Epidemiology and clinical features of COVID-19: A review of current literature. J. Clin. Virol. 2020; 127: 104357. https://doi.org/10.1016/j.jcv.2020.104357.
  5. Li R., Pei S., Chen B. et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (COVID-19). 2020. https://doi.org/10.1101/2020.02.14.20023127.
  6. Wu C., Chen X., Cai Y. et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JaMa Intern. Med. 2020; 13.03. 10.1001/jamainternmed.2020.0994' target='_blank'>https://doi: 10.1001/jamainternmed.2020.0994.
  7. Liu Y., Sun W., Li J. et al. Clinical features and progression of acute respiratory distress syndrome in coronavirus disease 2019. 2020. https://doi.org/10.1101/2020.02.17.20024166.
  8. Siddiqi H.K., Mehra M.R. COVID-19 Illness in Native and Immuno-suppressed States: A Clinical-Therapeutic Staging Proposal. J. Heart Lung Transplant. 2020; doi: 10.1016/j.healun.2020.03.012.
  9. Akhmerov A., Marban E. COVID-19 and the Heart. Circulation Res. 2020. https://doi.10.1161/CIRCRESAHA.120.317055.
  10. Xu Z., Shi L., Wang Y. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020. https://doi.org/10.1016/S2213-2600(20)30076-X.
  11. Barton L.M., Duval E.J., Stroberg E. et al. COVID-19 Autopsies, Oklahoma, USA. Am. J. Clin. Pathol. 2020; XX: 1-9. https://doi.10.1093/AJCP/AQAA062.
  12. Tian S., Hu W., Niu L. et al. Pulmonary pathology of early phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol. 2020. 10.1016/j.jtho.2020.02.010' target='_blank'>https://doi: 10.1016/j.jtho.2020.02.010.
  13. Gu J., Korteweg Ch. Pathology and Pathogenesis of Severe Acute Respiratory Syndrome. Am. J. Pathol. 2007; 170(4): 1136-47.
  14. Neurath M.F. Covid-19 and immunomodulation in IBD. Gut 2020; 0: 1-8. https://doh10.1136/gutjnl-2020-321269.
  15. South A.M., Diz D.I., Chappell M.C. COVID-19, ACE2, and the cardiovascular consequences. Am. J. Physiol. Heart Circ. Physiol. 2020; 318: H1084-H1090.
  16. Golchin A., Seyedjafari E., Ardeshirylajimi A. Mesenchymal Stem Cell Therapy for COVID-19: Present or Future. Stem Cell Rev. Rep. 2020. https://doi.org/10.1007/s12015-020-09973-w.
  17. Hamming I., Timens W., Bulthuis M.L. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. 2004; 203(2): 631-7.
  18. Hoffmann M., Kleine-Weber H., Schroeder S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; 181: 271-80.
  19. Li Y., Zhou W., Yang L., You R. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharm. Res. 2020; 104833. https://doi.org/10.10Wj.phrs.2020.104833.
  20. Varga Z., Flammer A.J., Steiger P. Endothelial cell infection and endotheliitis in COVID-19. The Lancet 2020. https://doi.org/10.1016/S0140-6736(20)30937-5.
  21. Sardu C., Gambardella J., Morelli M.B. et al. Is COVID-19 an Endothelial Disease? Clin. Basic Evidence 2020; 2020040204. 10.20944/preprints202004.0204.v1' target='_blank'>https://doi: 10.20944/preprints202004.0204.v1.
  22. Leng Z., Zhu R., Hou W. et al. Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging and Disease 2020; 11(2): 216-28.
  23. Wang K., Chen W., Zhou Y.-S. et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. 2020. https://doi.org/10.1101/2020.03.14.988345.
  24. Moore J.B., June C.H. Cytokine release syndrome in severe COVID-19. Science 2020. https://doh10.1126/science.abb8925.
  25. Guo J., Huang Z., Lin L., Lv J. Coronavirus Disease 2019 (COVID-19) and Cardiovascular Disease: A Viewpoint on the Potential Influence of Angiotensin/Converting Enzyme Inhibitors/Angiotensin Receptor Blockers on Onset and Severity of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J. Am. Heart Association 2020; 9(7): e016219. 10.1161/JAHA.120.016219' target='_blank'>https://doi: 10.1161/JAHA.120.016219.
  26. Griffiths M.J., Bonnet D., Janes S.M. Stem cells of the alveolar epithelium. The Lancet 2005; 366(9481); 249-60.
  27. Huang K., Kang X., Wang X. et al. Conversion of bone marrow mesenchymal stem cells into type II alveolar epithelial cells reduces pulmonary fibrosis by decreasing oxidative stress in rats. Mol. Med. Rep. 2015; 11(3): 1685-92.
  28. Behnke J., Kremer S., Shahzad T. et al. MSC Based Therapies-New Perspectives for the Injured Lung. J. Clin. Med. 2020; 9; 682. 10.3390/jcm9030682' target='_blank'>https://doi: 10.3390/jcm9030682.
  29. Bari E., Ferrarotti I., Saracino L. Mesenchymal Stromal Cell Secretome for Severe COVID-19 Infections: Premises for the Therapeutic Use. Cells 2020; 9: 924. 10.3390/cells9040924' target='_blank'>https://doi: 10.3390/cells9040924.
  30. Horie S., Masterson C., Devaney J., Laffey J.G. Stem cell therapy for acute respiratory distress syndrome. Current Opinion in Critical Care 2016; 22(1): 14-20.
  31. Han J., Li Y., Li Y. Strategiesto Enhance Mesenchymal Stem Cell-Based Therapies for Acute Respiratory Distress Syndrome. Stem Cells Int. 2019; 5432134. https://doi.org/10.1155/2019/5432134.
  32. Cruz F.F., Rocco P.R.M. The potential of mesenchymal stem cell therapy for chronic lung disease. Exp. Rev. Resp. Med. 2020. https://doi.org/10.1080/17476348.2020.1679628.
  33. Lightner A.L., Garcia-Olmo D. Mesenchymal Stem Cell Therapy Can Transcend Perianal Crohn’s Disease: How Colorectal Surgeons Can Help in the COVID-19 Crisis. Dis. Colon. Rectum. 2020. https://doi.org/10.1097/DCR.0000000000001700.
  34. Wilson J.G., Liu K.D., Zhuo H. et al. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir. Med. 2015; 3(1): 24-32.
  35. Laffey J.G., Matthay M.A. Fifty Years of Research in ARDS. Cell-based Therapy for Acute Respiratory Distress Syndrome. Biology and Potential Therapeutic Value. Am. J. Respir. Crit. Care Med. 2017; 196(3): 266-73.
  36. Zheng G., Huang L., Tong H. et al. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. Respir. Res. 2014; 15: 39. 10.1186/1465-9921-15-39' target='_blank'>https://doi: 10.1186/1465-9921-15-39.
  37. Liang B., Chen J., Li T. et al. Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord mesenchymal stem cells. 2020. chinaXiv:202002.00084v1.
  38. Simonson O.E., Mougiakakos D., Heldring N., et al. In vivo effects of mesenchymal stromal cells in two patients with severe acute respiratory distress syndrome. Stem Cells Transl Med. 2015; 4: 1199-213.
  39. Matthay M.A., Calfee C.S., Zhuo H., et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial. Lancet Respir. Med. 2019; 7:154-62.
  40. Чайлахян Р.К., Аверьянов А.В., Забозлаев Ф.Г. и др. Сравнительное исследование эффективности трансплантации мультипотентных мезенхимальных стромальных клеток костного мозга, культивированных в условиях нормоксии и гипоксии, и их кондиционированных сред на модели острого повреждения легких. Клеточные технологии в биологии и медицине 2014; 1: 25-30.
  41. Аверьянов А.В., Коноплянников А.Г., Забозлаев Ф.Г. и др. Сравнительное исследование эффектов мезенхимальных стволовых клеток при различных методах доставки в экспериментальной модели фиброза легких. Клиническая практика 2018; 9(4): 4-14.
  42. Clinical Study of the Efficacy and Safety of the Application of Allogeneic Mesenchymal (Stromal) Cells of Bone Marrow, Cultured Under the Hypoxia in the Treatment of Patients With Severe Pulmonary Emphysema. NCT01849159/08/05/2013.
  43. Курсова Л.В., Конопляников А.Г., Пасов В.В. и др. Возможности применения аутологичных мезенхимальных стволовых клеток в лечении лучевых повреждений легких. Клеточные технологии в биологии и медицине 2009; 6(2); 108-12.
  44. Аверьянов А.В., Коноплянников А.Г. Клеточные технологии в лечении заболеваний легких - есть ли перспективы? Клиническая практика 2010; 4: 3-11.
  45. Аверьянов А.В., Королева И.А., Коноплянников М.А. Клиническое исследование эффективности и безопасности лечения аллогенными мезенхимальными стромальными клетками костного мозга больных быстропрогрессирующими формами идиопатического лёгочного фиброза. Материалы III Национального конгресса по регенеративной медицине. Москва, 15-18 ноября, 2017. Гены и клетки 2017; 12(3): 22.
  46. Atluri S., Manchikanti L., Hirsch J.A. Expanded Umbilical Cord Mesenchymal Stem Cells (UC-MSCs) as a Therapeutic Strategy In Managing Critically Ill COVID-19 Patients: The Case for Compassionate Use. Pain Physician. 2020; 23: E71-E83.
  47. Гемабанк попросил Минздрав использовать стволовые клетки для лечения коронавирусной пневмонии. https://hsci.ru/news/gemabank-poprosil-minzdrav-ispolzovat-stvolovye-kletki-dlya-lecheniya-koronavirusnoj-pnevmonii.

Copyright (c) 2020 PJSC Human Stem Cells Institute

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 57156 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies