Complex assessment of a plasmid DNA mechanism of action in development of gene-activated materials

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The number of studies related with gene-activated matrices is increasing annually; the first-in-class product has been already implemented into clinical practice for bone grafting indications. Considering specificity of the gene-activated matrices mechanism of action determined by gene constructs, there is a demand to standardize the methods allowing to characterize all the stages of biological action in vivo. Here, using on the example of a gene-activated hydrogel consisting of type I collagen and plasmid DNA with the vascular endothelial growth factor gene (VEGF165), the main steps of the plasmid DNA mechanism of action were confirmed by various methods. For this, a fluorescent Cy3, reporter plasmid DNA with the firefly luciferase gene (Luc), RT-PCR and ELISA, immunohistochemical study with antibodies to CD31 were used. The results were compared with the other scientific papers, some recommendations were formulated to determine a minimally required list of studies for the development of gene-activated materials.

Full Text

Restricted Access

About the authors

I. Y Bozo

Histograft, LLC; Research Institute of General Pathology and Pathophysiology; A.I. Burnazyana Federal Medical Biophysical Center, FMBA of Russia


M. O Mavlikeev

Research Institute of General Pathology and Pathophysiology; I.I. Mechnikov North-Western State Medical University

A. A Titova

Research Institute of General Pathology and Pathophysiology; Kazan (Volga Region) Federal University

A. I Bilyalov

Kazan (Volga Region) Federal University

F. A Indeykin

Kazan Federal Medical University

A. A Pulin

Research Institute of General Pathology and Pathophysiology

I. I Eremin

Research Institute of General Pathology and Pathophysiology

V. S Komlev

AA. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

A. A Isaev

Institute of Human Stem Cells, PJSC

R. V Deev

I.I. Mechnikov North-Western State Medical University; Institute of Human Stem Cells, PJSC


  1. Lu H., Lv L., Dai Y. et al. Porous chitosan scaffolds with embedded hyaluronic acid/chitosan/plasmid-DNA nanoparticles encoding TGF-p1 induce DNA controlled release, transfected chondrocytes, and promoted cell proliferation. PLoS One 2013; 8(7]: e69950.
  2. Keeney M., van den Beucken J.J., van der Kraan P.M. et al. The ability of a collagen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with VEGF(165). Biomaterials. 2010; 31(10]: 2893-902.
  3. Бозо И.Я., Деев Р.В., Журавлева М.Н., Комлев В.С., Попов В.К., Смирнов И.В., Федотов А.Ю. Ген-активированный остеопластический материал на основе октакальциевого фосфата, допированный ионами магния. Материаловедение 2017; 5: 33-37.
  4. Деев Р.В., Дробышев А.Ю., Бозо И.Я. Ординарные и активированные остеопластические материалы. Вестник травматологии и ортопедии им. Н.Н. Приорова 2015; 1: 51-69.
  5. Peach C.J., Mignone V.W., Arruda M.A. et al. Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2. Int J. Mol Sci. 2018; 19(4]: 1264.
  6. Деев Р.В., Бозо И.Я., Мжаванадзе Н.Д. и др. Эффективность применения гена VEGF165 в комплексном лечении пациентов с хронической ишемией нижних конечностей 2а-3 стадии. Ангиология и сосудистая хирургия 2014; 20(2]: 38-48. [Deev R.V., Bozo I.Ya., Mzhavanadze N.D. et al. Efficacy of using VEGF165 gene in comprehensive treatment of patients with stage 2А-3 lower limb chronic ischaemia. Angiol Sosud Khir. 2014; 20(2]: 38-48].
  7. Sallent I., Capella-Monsonis H., Procter P. и др. The Few Who Made It: Commercially and Clinically Successful Innovative Bone Grafts. Front Bioeng Biotechnol. 2020; 8: 952.
  8. Chira S., Jackson C.S., Oprea I. et al. Calin, Ioana Berindan-Neagoe Progresses towards safe and efficient gene therapy vectors. Oncotarget 2015; 6(31]: 30675-30703.
  9. Григорян А.С., Шевченко К.Г. Возможные молекулярные механизмы функционирования плазмидных конструкций, содержащих ген VEGF. Гены и Клетки 2011; 6(3]: 24-28. [Grigorian A.S., Shevchenko K.G. Some possible molecular mechanisms of VEGF encoding plasmids functioning. Genes and Cells 2011; 6(3]: 24-28].
  10. Бозо И.Я., Билялов А.И., Мавликеев М.О. и др. Ген-активированные гидрогели в регенеративной медицине. Гены и Клетки 2019; 14(1]: 16-21
  11. D’Mello S., Atluri K., Geary S.M. et al. Bone regeneration using gene-activated matrices. AAPS J. 2017; 19(1]: 43-53.
  12. Bozo I.Y., Deev R.V., Drobyshev A.Y. et al. World's First Clinical Case of Gene-Activated Bone Substitute Application. Case Rep Dent. 2016; 2016: 8648949.
  13. Masgutov R., Chekunov M., Zhuravleva M. et al. Use of gene-activated demineralized bone allograft in the therapy of ulnar pseudarthrosis. case report. BioNanoScience. 2017; 7(1]: 194-198.
  14. Деев Р.В., Бозо И.Я., Мавликеев М.О. Регенерационный гистогенез в области дефекта скелетной мышцы при местном введении ген-активированного гидрогеля на основе гиалуроновой кислоты в эксперименте. Гены и Клетки 2020; 15(2]: 66-72. [Deev R.V., Bozo I.Y., Mavlikeev M.O. et al. Regenerative histogenesis in a skeletal muscle defect with local injection of gene-activated hydrogel in an experiment. Genes and Cells 2020; 15(2]: 66-72].
  15. Palumbo РМ, Zhong X., Panus D. et al. Transgene expression and local tissue distribution of naked and polymer-condensed plasmid DNA after intradermal administration in mice. J. Control Release. 2012; 159(2]: 232-39.
  16. Sadeghpour H., Khalvati B., Entezar-Almahdi E. et al. Double domain polyethylenimine-based nanoparticles for integrin receptor mediated delivery of plasmid DNA. Sci Rep. 2018; 8: 6842.
  17. Bono N., Ponti F., Mantovani D. et al. Non-Viral in Vitro Gene Delivery: It is Now Time to Set the Bar! Pharmaceutics. 2020; 12(2]: 183.
  18. Petkov S.P., Heuts F., Krotova O.A. et al. Evaluation of immunogen delivery by DNA immunization using non-invasive bioluminescence imaging. Hum Vaccin Immunother. 2013; 9(10]: 2228-2236.
  19. Tseng J.-C., Vasquez K.O., Peterson J.D. Optical Imaging on the IVIS SpectrumCT System: General and Technical Considerations for 2D and 3D Imaging. 2015. resources/docs/TCH_012007_01_IVIS-2D_3D_Imaging.pdf
  20. Бозо И.Я., Деев Р.В., Дробышев А.Ю. и др. Эффективность ген-активированного остеопластического материала на основе октакальциевого фосфата и плазмидной днк с геном VEGF в восполнении «критических» костных дефектов. Вестник травматологии и ортопедии им. Н.Н. Приорова 2015; 1: 35-42

Copyright (c) 2020 Eco-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 85657 от 21.07.2023 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies