The effect of the cell-free matrix of the human umbilical cord on the growth dynamics and viability of cultured human and animal cells ex vivo

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Due to its extraembryonic origin, the umbilical cord retains regenerative molecules of the fetal phenotype The cell-free matrix of the human umbilical cord as the basis of various tissue-engineering structures (TES) for regenerative medicine can contribute to the repopulation of transplanted matrices by patient-specific cells. The aim of the work was to study in vitro the cytotoxic properties of a tissue-engineered lyophilized cell-free matrix made by the detergent method from the human umbilical cord Warton jelly with respect to human skin fibroblasts, as well as the effect of this matrix on the viability and growth of cells of the cerebral cortex, liver, spleen, articular cartilage, heart and skin of various laboratory animals during organotypic cultivation. Using the MTT test, it was revealed that the tissue-engineered acellular lyophilized matrix of the human umbilical cord does not show a toxic effect on human dermal fibroblast. When using the method of organ cultures, differences were revealed in the influence of the tissue-engineered matrix on the migration of cells from explants of tissues of different organs of various laboratory animals, their growth dynamics and viability, which may be due to species specificity, which must be taken into account when choosing test systems. The most noticeable positive effect of the matrix on the growth dynamics and viability of articular cartilage explant cells was found. Adhesion to the matrix of cells of the cerebral cortex of the Vietnamese lop-bellied pig as well as cells of the spleen of a guinea pig was revealed. The cell-free human umbilical cord matrix can be used in the creation of acellular matrices for the treatment of deep dermal and articular cartilage damages.

Full Text

Restricted Access

About the authors

L. I Kalyuzhnaya

S.M. Kirov Military Medical Academy

M. O Sokolova

S.M. Kirov Military Medical Academy

V. E Chernov

S.M. Kirov Military Medical Academy

D. A Zemlyanoy

St. Petersurg State Pediatric Medical University

S. V Chebotarev

S.M. Kirov Military Medical Academy

N. I Chalisova

S.M. Kirov Military Medical Academy; I.P. Pavlov Institution of Physiology of the RAS

A. A Kondratenko

S.M. Kirov Military Medical Academy

Yu. S Grechanaya

Peter the Great StPetersburg Polytechnic University; Institute of Cytology of the RAS

N. V Edomenko

Saint Petersburg State University; Institute of Cytology of the RAS

E. I Alexander-Sinclair

Institute of Cytology of the RAS


  1. Leung А., Crombleholme T.M., Keswani S.G. Fetal wound healing: implications for minimal scar formation. Curr. Opin. Pediatr. 2015; 24(3): 371-8.
  2. Rowlatt U. Intrauterine Wound Healing in a 20 Week Human Fetus. Virchows Arch. A Path. Anat. and Histol. 1979; 381: 353-61.
  3. Lo D.D., Zimmermann A.S., Nauta A. et al. Scarless fetal skin wound healing update. Birth Defects Research 2012; 96(PtQ: 237-47.
  4. Калюжная Л.И., Чернов В.Е., Фрумкина А.С. и соавт. Изготовление тканеинженерного бесклеточного матрикса пуповины человека. Вестник Российской Военно-медицинской академии 2020; 1(69): 124-30.
  5. Калюжная Л.И., Хоминец В.В., Чеботарёв С.В. и соавт. Применение биоматериала из пуповины человека для восстановления повреждений суставного хряща. Профилактическая и клиническая медицина 2019; 4(73): 45-52.
  6. Crapo P.M., Gilbert T.W., Badylak S.F. An overview of tissue and whole organ decellularization processes. Biomaterials 2011; 32: 3233-43.
  7. Gupta A., El-Amin S.F., Levy H.J. et al. Umbilical cord-derived Wharton’s jelly for regenerative medicine applications. Journal of Orthopaedic Surgery and Research 2020; 15(49): 1-9.
  8. Koci Z., Vyborny K., Dubisova J. et al. Extracellular Matrix Hydrogel Derived from Human Umbilical Cord as a Scaffold for Neural Tissue Repair and Its Comparison with Extracellular Matrix from Porcine Tissues. Tissue engineering. Part C-methods 2017; 23(6): 333-45.
  9. Деев Р.В., Бозо И.Я., Мавликеев М.О. и соавт. Регенерационный гистогенез в области дефекта скелетной мышцы при местном введении ген-активированного гидрогеля на основе гиалуроновой кислоты в эксперименте. Гены & Клетки 2020; XIV(2): 66-72.

Copyright (c) 2021 Eco-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 85657 от 21.07.2023 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies