Comparative study of an activity of rat spinal ganglion cells and PC12 cells on the surfacesmodified with bioadhesive polymers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


We studied the adsorption of bioadhesive polymers
(polyornithine, gelatin, laminin) on polystyrene surface
by the use of dynamic light scattering. The contribution
of biopolymers to resulting zeta potential of the modified
surface was assessed. PC12 cells do not exhibit selective
adhesion in the presence of foetal bovine serum. Polystyrene
with adsorbed polyornithine promotes primary adhesion
of PC12 cells cultured in serum-free medium with nerve
growth factor. Subsequently adsorbed laminin induces
spreading and differentiation of the cells into neuronal
direction. Primary neurons isolated from rat spinal ganglion
adhere preferentially on the polyornithine-modified surface.
On the polyornithine-laminin surface neurons intensively
form neuritis that correlates with proliferation of glial
cells positive for S100 protein. The results show that
PC12 cells and primary neurons exhibit similar response to
surface material with the latter cells being more sensitive
to this factor. Isolated cell culture can be used to study the
relationship between neurite outgrowth and Schwann cells
proliferation on different biomaterials.

About the authors

L D Yakunina,

Kazan (Volga Region) Federal University, Kazan

Kazan (Volga Region) Federal University, Kazan

R A Kurbanov,

Kazan (Volga Region) Federal University, Kazan

Kazan (Volga Region) Federal University, Kazan

O V Bondar,

Kazan (Volga Region) Federal University, Kazan

Kazan (Volga Region) Federal University, Kazan

T I Abdullin

Kazan (Volga Region) Federal University, Kazan

Kazan (Volga Region) Federal University, Kazan


  1. Sarmento B., Andrade F., Silva S.B. et al. Cell-based in vitro models for predicting drug permeability. Expert. Opin. Drug Metab. Toxicol. 2012; 5: 607-21.
  2. Beaulieu M.M., Tremblay P.L., Berthod F. Tissue-engineered models of the nervous system. Med. Sci. 2009; 25(ΙΙΙ): 288-92.
  3. Pfister L.A., Papaloizos M., Merkle H.P. et al. Nerve conduits and growth factor delivery in peripheral nerve repair. J. Peripher. Nerv. Syst. 2007; 12: 65-82 .
  4. Schmidt C.E., Leach J.B. Neural tissue engineering: strategies for repair and regeneration. Biomed. Eng. 2003; 5: 293-347.
  5. Pollock M. Nerve regeneration. Curr. Opin. Neurol. 1995; 8: 354-8.
  6. Челышев Ю.А., Богов А.А. Экспериментальное обоснова- ние применения кондуитов нерва. Неврологический вестник 2008; 101-9.
  7. Tsai E.C., Dalton P.D., Shoichet M.S. et al. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transaction. Biomaterials 2006; 27: 519-33.
  8. Archibald S.J., Krarup C., Shefner J. et al. A collagen-based nerve guide conduit for peripheral nerve repair: an electrophysiological study of nerve regeneration in rodents and nonhuman primates. J. Comp. Neurol. 1991; 306: 685-96.
  9. Haipeng G., Yinghui Z., Jianchun L. et al. Studies on nerve cell affinity of chitosan-derived materials. J. Biomed. Mater. Res. 2000; 52: 285-95.
  10. Matyash M., Despang F., Mandal R. Novel soft alginate hydrogel strongly supports neurite growth and protects neurons against oxidative stress. Tissue Eng. 2012; 18(Ι-ΙΙ): 55-66.
  11. Tse K.H., Sun M., Mantovani C. et al. In vitro evaluation of polyester-based scaffolds seeded with adipose derived stem cells for peripheral nerve regeneration. J. Biomed. Mater. Res. 2010; 95(ΙΙΙ): 701-8.
  12. Nakamura T., Inada Y., Fukuda S. et al. Experimental study on the regeneration of peripheral nerve gaps through a polyglycolic acid-collagen (PGA-collagen) tube. Brain Res. 2004; 1027: 18-29.
  13. Zhang J., Oswald T.M., Lineaweaver W.C. et al. Enhancement of rat sciatic nerve regeneration by fibronectin and laminin through a silicone chamber. J. Reconstr. Microsurg. 2003; 19(VΙΙ): 467-72.
  14. Weinstein D.E. Review: The role of schwann cells in neural regeneration. Neuroscientist 1999; 5: 208-16.
  15. Bledi Y., Domb J.A., Linial M. Culturing neuronal cells on surfaces coated by a novel polyethyleneimine-based polymer. Brain Res. Protoc. 2000; 5(III): 282-9.
  16. Corey J.M., Lin D.Y., Mycek K.B. et al. Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. J. Biomed. Mater. Res. A. 2007 Dec 1; 83(III): 636-45.
  17. Chen Y.S., Hsieh C.L., Tsai C.C. et al. Peripheral nerve regeneration using silicone rubber chambers filled with collagen, laminin and fibronectin. Biomaterials 2000; 21(XV): 1541-7.

Copyright (c) 2012 Eco-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 85657 от 21.07.2023 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies