Mesenchymalstem cells from various human tissues: biological properties, assessmentof quality and safetyfor clinical use

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Developing direction cellular medicine is the use of the
unique properties of progenitor cells with high biological
activity and potential for differentiation. Multipotent
mesenchymal stromal cells (MMSC) are pluripotent stem
cells, has several important properties for clinical use. The
use of MMSC cultured «ex vivo» opens the question about
the quality and safety culture for clinical use. The purpose
of this review was to develop a program of cultivation and
study of important properties of samples of human MMSC
for clinical application. The review shows the characteristic
phases of assessing the quality and safety of MMSC, including
the cultivation of cells «ex vivo», immunological assessment,
growth, immunomodulatory, and regenerative properties of
the progenitor, an assessment of genetic and microbiological
safety. Analyzed the assessment the quality and safety of
MMSC «in vitro» tests. It is shown that the severity of the
properties of each samples different and depends on the
source and culture conditions MMSC.

About the authors

N R Shachpazyan

Stem Cell Bank, Moscow

Stem Cell Bank, Moscow

T A Astrelina

Stem Cell Bank, Moscow

Stem Cell Bank, Moscow

M V Yakovleva

Stem Cell Bank, Moscow

Stem Cell Bank, Moscow

References

  1. Friedenstein A.J., Petrakova K.V., Kurolesova A.I. et al. Heterotypic transplants of bone marrow: analysis of precursor cells for osteogenic and hematopoietic tissues. Transplant. 1968; 6: 230-47.
  2. Rastegar F., Shenaq D., Huang J. et al. Mesenchymal stem cells: Molecular characteristics and clinical applications. World J. Stem Cells 2010; 2(4): 67-80.
  3. Secco M., Moreira Y.B., Zucconi E. et al. Gene expression profile of mesenchymal stem cells from paired umbilical cord units: cord is different from blood. Stem Cell Rev. 2009; 5(4): 387-401.
  4. Hass R., Kasper C., Böhm S. et al Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun. Signal. 2011; 9: 12.
  5. Friedenstein A.J., Gorskaja J.F., Kulagina N.N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 1976; 4: 267-74.
  6. Cao C., Dong Y. Study on culture and in vitro osteogenesis of blood-derived human mesenchymal stem cells. Zhon. Xiu Fu Chong Jian Wai Ke Za Zhi. 2005; 19: 642-7.
  7. Fraser J.K., Wulur I., Alfonso Z. et al. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 2006; 24: 150-4.
  8. Griffiths M.J., Bonnet D., Janes S.M. Stem cells of the alveolar epithelium. Lancet 2005; 366: 249-60.
  9. Beltrami A.P., Barlucchi L., Torella D. et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003, 114: 763-76.
  10. Josse C., Schoemans R., Niessen N.A. et al. Systematic chromosomal aberrations found in murine bone marrow-derived mesenchymal stem cells. Stem Cells Dev. 2010; 19(8): 1167-73.
  11. Semenov O.V., Koestenbauer S., Riegel M. et al. Multipotent mesenchymal stem cells from human placenta: critical parameters for isolation and maintenance of stemness after isolation. Am. J. Obstet. Gynecol. 2010; 202(2): 193.
  12. Fong C.Y., Subramanian A., Biswas A. et al. Derivation efficiency, cell proliferation, freeze-thaw survival, stem-cell properties and differentiation of human Wharton's jelly stem cells. Reprod. Biomed. Online. 2010; 21(3): 391-401. 13. In 't Anker P.S., Scherjon S.A., Keur C.K. et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 2004; 22: 1338-45.
  13. Brooke G., Tong H., Levesque J.P. et al. Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta. Stem Cells Dev. 2008; 17: 929-40.
  14. Saka Y., Furuhashi K., Katsuno T. et al. Adipose-derived stromal cells cultured in a low-serum medium, but not bone marrow-derived stromal cells, impede xenoantibody production. Xenotransplantation 2011; 18(3): 196-208.
  15. Wagner W., Bork S., Horn P. et al. Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS One 2009; 4(6): e5846.
  16. Xia W., Li H., Wang Z. et al. Human platelet lysate supports ex vivo expansion and enhances osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Cell Biol. Int. 2011; 35(6): 639-43.
  17. Bieback K., Hecker A., Kocaömer A. et al. Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells 2009; 27(9): 2331-41.
  18. Jenhani F., Durand V., Ben Azouna N. et al. Human cytokine expression profile in various conditioned media for in vitro expansion bone marrow and umbilical cord blood immunophenotyped mesenchymal stem cells. Transplant. Proc. 2011; 43(2): 639-43.
  19. Castegnaro S., Chieregato K., Maddalena M. et al. Effect of platelet lysate on the functional and molecular characteristics of mesenchymal stem cells isolated from adipose tissue. Curr. Stem Cell Res. Ther. 2011; 6(2): 105-14.
  20. Horn P., Bokermann G., Cholewa D. et al. Impact of individual platelet lysates on isolation and growth of human mesenchymal stromal cells. Cytotherapy 2010; 12(7): 888-98.
  21. Liu H., Xue W., Ge G. et al. Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1α in MSCs. Biochem. Biophys. Res. Commun. 2010; 401(4): 509-15.
  22. Rasmussen J.G., Frøbert O., Pilgaard L. et al. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells. Cytotherapy 2011; 13(3): 318-28.
  23. Lund T.C., Kobs A., Blazar B.R. et al. Mesenchymal stromal cells from donors varying widely in age are of equal cellular fitness after in vitro expansion under hypoxic conditions. Cytotherapy 2010; 12(8): 971-81.
  24. Tondreau T., Lagneaux L., Dejeneffe M. et al. Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection: phenotype, proliferation kinetics and differentiation potential. Cytotherapy 2004; 6(4): 372-9.
  25. Kern S., Eichler H., Stoeve J. et al.Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24(5): 1294-301.
  26. Mitchell J.B., McIntosh K., Zvonic S. et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 2006; 24(2): 376-85.
  27. Pittenger M.F., Mackay A.M., Beck S.C. et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-7.
  28. Shipp M.A., Look A.T. Hematopoietic differentiation antigens that are membrane-associated enzymes: cutting is the key! Blood 1993; 82(4): 1052-70.
  29. Vogel W., Grunebach F., Messam C.A. et al. Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cells. Haematologica 2003; 88: 126-33.
  30. Wu X., Miyake K., Medina K.L. et al. Recognition of murine integrin beta 1 by a rat anti-stromal cell monoclonal antibody. Hybridoma 1994; 13(5): 409-16.
  31. Miyake K., Medina K.L., Hayashi S. et al. Monoclonal antibodies to Pgp-1/CD44 block lympho-hemopoiesis in long-term bone marrow cultures. J. Exp. Med. 1990; 171(2): 477-88.
  32. Zhou D.H., Huang S.L., Wu Y.F. et al. The expansion and biological characteristics of human mesenchymal stem cells. Zhon. Er Ke Za Zhi. 2003; 41(8): 607-10.
  33. Joyner C.J., Bennett A., Triffitt J.T. Identification and enrichment of human osteoprogenitor cells by using differentiation stage-specific monoclonal antibodies. Bone 1997; 21(1): 1-6.
  34. Barry F., Boynton R., Murphy M. et al. The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochem. Biophys. Res. Commun. 2001; 289: 519-24.
  35. Chen X.D., Qian H.Y., Neff L. et al. Thy-1 antigen expression by cells in the osteoblast lineage. J. Bone Miner. Res. 1999; 14: 362-75.
  36. Haynesworth S.E., Baber M.A., Caplan A.I. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 1992; 13: 69-80.
  37. Barry F.P., Boynton R.E., Haynesworth S. et al. The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem. Biophys. Res. Com. 1999; 265(1): 134-9.
  38. Verfaillie C.M. In. Hoffman R., Strauss M. et al. Hematology - basic principles and practice. Anatomy and physiology of hematopoiesis. 3rd. Philadelphia: Churchill-Livingstone, 2000.
  39. Bruder S.P., Horowitz M.C., Mosca J.D. et al. Monoclonal antibodies reactive with human osteogenic cell surface antigens. Bone 1997; 21: 225-35.
  40. Delorme B., Ringe J., Gallay N. et al. Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood 2008; 111: 2631-5.
  41. Tran T.C., Kimura K., Nagano M. et al. Identification of human placenta-derived mesenchymal stem cells involved in reendothelialization.
  42. J. Cell. Physiol. 2011; 226(1): 224-35.
  43. Simmons P.J., Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 1991; 78: 55-62.
  44. Gang E.J., Bosnakovski D., Figueiredo C.A. et al. SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 2007; 109(4): 1743-51.
  45. Martinez C., Hofmann T.J., Marino R. et al. Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood 2007; 109: 4245-8.
  46. Hegner B., Weber M., Dragun D. et al. Differential regulation of smooth muscle markers in human bone marrow-derived mesenchymal stem cells. J. Hypertens. 2005; 23: 1191-202.
  47. Aleksandrova M.A., Sukhikh G.T., Chailakhyan R.K. et al. Comparative analysis of differentiation and behavior of human neural and mesenchymal stem cells in vitro and in vivo. Bull. Exp. Biol. Med. 2006; 141: 152-60.
  48. Gang E.J., Bosnakovski D., Figueiredo C.A. et al. SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 2007. 109: 1743-51.
  49. Schaffler A., Buchler C. Concise review: adipose tissuederived stromal cells-basic and clinical implications for novel cell-based therapies. Stem Cells 2007; 25: 818-27.
  50. Zuk P.A., Zhu M., Ashjian P. et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 2002; 13: 4279-95. 51. De Ugarte D.A., Alfonso Z., Zuk P.A. et al. Differential expression of stem cell mobilizationassociated molecules on multilineage cells from adipose tissue and bone marrow. Immunol. Lett. 2003; 89: 267-70.
  51. Dominici M., Le Blanc K., Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
  52. Kern S., Eichler H., Stoeve J. et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24(5): 1294-301.
  53. Jiang Y., Jahagirdar B.N., Reinhardt R.L. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41-9.
  54. Janicki P., Boeuf S., Steck E. et al. Prediction of in vivo bone forming potency of bone marrow-derived human mesenchymal stem cells. Eur. Cell Mater. 2011; 21: 488-507.
  55. Horwitz E.M., Gordon P.L., Koo W.K. et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. PNAS 2002; 99: 8932
  56. Sarraf C.E., Otto W.R., Eastwood M. In vitro mesenchymal stem cell differentiation after mechanical stimulation. Cell Prolif. 2011; 44(1): 99-108.
  57. Baksh D., Yao R., Tuan R.S. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 2007; 25(6): 1384-92. Клеточная трансплантология и тканевая инженерия Том VII, № 1, 2012 32 Обзоры
  58. Fujita T., Azuma Y., Fukuyama R. et al. Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. Cell Biol. 2004; 166: 85-95.
  59. Enomoto H., Furuichi T., Zanma A. et al. Runx2 deficiency in chondrocytes causes adipogenic changes in vitro. Cell Sci. 2004; 117: 417-25. 61. Ronzière M.C., Perrier E., Mallein-Gerin F. et al. Chondrogenic potential of bone marrow- and adipose tissue-derived adult human mesenchymal stem cells. Biomed. Mater Eng. 2010; 20(3): 145-58.
  60. Miyaki S., Nakasa T., Otsuki S. et al. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum. 2009; 60(9): 2723-30.
  61. Giovannini S., Diaz-Romero J., Aigner T. et al. Micromass co-culture of human articular chondrocytes and human bone marrow mesenchymal stem cells to investigate stable neocartilage tissue formation in vitro. Eur. Cell Mater. 2010; 20: 245-59.
  62. Technau A., Froelich K., Hagen R. et al. Adipose tissue-derived stem cells show both immunogenic and immunosuppressive properties after chondrogenic differentiation. Cytotherapy 2011; 13(3): 310-7.
  63. Соколова И.Б., Павличенко Н.Н. Механизмы воздействия экзогенных мезенхимальных стволовых клеток на ишемизиро- ванную ткань при сердечно-сосудистых заболеваниях. Цитология 2010; 52(11): 911-7.
  64. Chen T.S., Lai R.C., Lee M.M. et al. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res. 2010; 38(1): 215-24.
  65. Li Q., Turdi S., Thomas D.P. et al. Intra-myocardial delivery of mesenchymal stem cells ameliorates left ventricular and cardiomyocyte contractile dysfunction following myocardial infarction. Toxicol. Lett. 2010; 195(2-3): 119-26.
  66. Fukuda K. Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering. Artif. Organs. 2001; 25(3): 187-93.
  67. Perasso L., Cogo C.E., Giunti D. et al. Systemic administration of mesenchymal stem cells increases neuron survival after global cerebral ischemia in vivo (2VO). Neural. Plast. 2010; 2010: 534925.
  68. Cai S., Shea G.K., Tsui A.Y. et al. Derivation of clinically applicable schwann cells from bone marrow stromal cells for neural repair and regeneration. CNS Neurol. Disord. Drug. Targets. 2011; 10(4): 500-8.
  69. Bae K.S., Park J.B., Kim H.S. et al. Neuron-like differentiation of bone marrow-derived mesenchymal stem cells. Yonsei. Med. J. 2011; 52(3): 401-12.
  70. Kopen G., Prockop J., Phinney D. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Cell Biol. 1999; 96: 10711-16.
  71. Deng J., Petersen Â., Steindler D. et al. Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 2006; 24: 1054-64.
  72. Datta I., Mishra S., Mohanty L. et al. Neuronal plasticity of human Wharton's jelly mesenchymal stromal cells to the dopaminergic cell type compared with human bone marrow mesenchymal stromal cells. Cytotherapy 2011; 45: 8.
  73. Puglisi M.A., Saulnier N., Piscaglia A.C. et al. Adipose tissuederived mesenchymal stem cells and hepatic differentiation: old concepts and future perspectives. Eur. Rev. Med. Pharmacol. Sci. 2011; 15(4): 355-64.
  74. Kuo T.K., Hung S.P., Chuang C.H. et al. Stem cell therapy for liver disease: Parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology 2008; 134: 2111-21.
  75. Aurich I., Mueller L.P., Aurich H. et al. Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut. 2007; 56: 405-15.
  76. Kanazawa H., Fujimoto Y., Teratani T. et al. Bone marrowderived mesenchymal stem cells ameliorate hepatic ischemia reperfusion injury in a rat model. PLoS One 2011; 6(4): e19195.
  77. Leelawat K., Narong S., Chaijan S. et al. Proteomic profiles of mesenchymal stem cells induced by a liver differentiation protocol. Int.J. Mol. Sci. 2010; 11(12): 4905-15.
  78. Lee K.D., Kuo T.K., Whang-Peng J. et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 2004; 40(6): 1275-84.
  79. Timper K., Seboek D., Eberhardt M. et al. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagons-expressing cells. Biochem. Biophys. Res. Commun. 2006; 341: 1135-40.
  80. Sun Y., Chen L., Hou X.G. et al.Differentiation of bone marrowderived mesenchymal stem cells from diabetic patients into insulinproducing cells in vitro. Chin. Med. J. (Engl). 2007; 120: 771-6.
  81. Vija L., Farge D., Gautier J.F. et al. Mesenchymal stem cells: Stem cell therapy perspectives for type 1 diabetes. Diabetes Metab. 2009; 35(2): 85-93.
  82. Tang D.Q., Cao L.Z., Burkhardt B.R. et al. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 2004; 53 : 1721-32.
  83. Kern S., Eichler H., Stoeve J. et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24: 1294-301.
  84. Chao C.K., Chao F.K., Fu Y.S. et al. Islet-like clusters derived from mesenchymal stem cells in Wharton's jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS ONE 2008; 3: e1451.
  85. Jiang R., Han Z., Zhuo G. et al. Transplantation of placentaderived mesenchymal stem cells in type 2 diabetes: a pilot study. Front Med. 2011; 5(1): 94-100.
  86. Huang X.P., Sun Z., Miyagi Y. et al. Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their longterm benefits for myocardial repair. Circulation 2010; 122: 2419- 29.
  87. Niemeyer P., Vohrer J., Schmal H. et al. Survival of human mesenchymal stromal cells from bone marrow and adipose tissue after xenogenic transplantation in immunocompetent mice. Cytotherapy 2008; 10(8): 784-95.
  88. Barlow S., Brooke G., Chatterjee K. et al. Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells. Stem Cells Dev. 2008, 17: 1095-107.
  89. Wagner W., Horn P., Castoldi M. et al. Replicative senescence of mesenchymal stem cells - a continuous and organized process. PLoS ONE 2008; 5: e2213.
  90. Larson B.L., Ylostalo J., Prockop D.J. Human multipotent stromal cells undergo sharp transition from division to development in culture. Stem Cells 2008; 26: 193-201.
  91. Bartmann C., Rohde E., Schallmoser K. et al. Two steps to functional mesenchymal stromal cells for clinical application. Transfusion 2007; 47: 1426-35.
  92. Wagner W., Bork S., Lepperdinger G. et al. How to track cellular aging of mesenchymal stromal cells? Aging (Albany NY). 2010; 2(4): 224-30.
  93. Rodriguez R., Rubio R., Masip M., et al. Loss of p53 induces tumorigenesis in p21-deficient mesenchymal stem cells. Neoplasia 2009; 11(4): 397-407.
  94. Laschober G.T., Brunauer R., Jamnig A. et al. Leptin receptor/ CD295 is upregulated on primary human mesenchymal stem cells of advancing biological age and distinctly marks the subpopulation of dying cells. Exp Gerontol. 2009; 44: 57-62.
  95. Liang X., So Y.H., Cui J. et al. The Low-dose Ionizing Radiation Stimulates Cell Proliferation via Activation of the MAPK/ERK Pathway in Rat Cultured Mesenchymal Stem Cells. J. Radiat. Res. 2011; 52(3): 380-6.
  96. Wei W., Sedivy J.M. Differentiation between senescence (M1) and crisis (M2) in human fibroblast cultures. Exp. Cell Res. 1999; 253: 519-22.
  97. Wagner W., Horn P., Castoldi M. et al. Replicative Senescence of Mesenchymal Stem Cells - a Continuous and Organized Process. PLoS ONE. 2008; 5: e2213.
  98. Schallmoser K., Bartmann C., Rohde E. et al. Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions. Haematologica 2010; 95(6): 867-74.
  99. Mehrazarin S., Oh J.E., Chung C.L. et al. Impaired odontogenic differentiation of senescent dental mesenchymal stem cells is associated with loss of Bmi-1 expression. J. Endod. 2011; 37(5): 662-6.
  100. Shay J.W., Zou Y., Hiyama E., Wright W.E. Telomerase and cancer. Hum. Mol. Genet. 2001; 10: 677-85.
  101. Harley C.B., Futcher A.B., Greider C.W. Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345: 458-60.
  102. Jeon B.G., Kang E.J., Mohana K.B. et al. Comparative analysis of telomere length, telomerase and reverse transcriptase activity in human dental stem cells. Cell Transplant. 2011. Epub ahead of print.
  103. Parsch D., Fellenberg J., Brümmendorf T.H. et al. Telomere length and telomerase activity during expansion and differentiation of human mesenchymal stem cells and chondrocytes. J. Mol. Med. 2004; 82(1): 49-55.
  104. Bartholomew A., Sturgeon C., Siatskas M. et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental hematology 2002; 30: 42-8. 107. Ménard C., Tarte K. Immunosuppression and mesenchymal stem cells: back to the future. Med. Sci. 2011; 27(3): 269-74. 108. Di Nicola M., Carlo-Stella C., Magni M. et al. Human bone marrow stromal cells suppress T lymphocyte proliferation induced by cellular or non-specific mitogenic stimuli. Blood 2002; 99: 3838-43.
  105. Nauta A.J., Fibbe W.E. Immunomodulatory properties of mesenchymal stromal cells. Blood 2007; 110: 3499-506.
  106. Sato K., Ozaki K., Oh I. et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 2007; 109(1): 228-34.
  107. Djouad F., Plence P., Bony C. et al. Immunosuppressive effect of mesenchymal stem cells favors tumour growth in allogeneic animals. Blood 2003; 102: 3837-44. Клеточная трансплантология и тканевая инженерия Том VII, № 1, 2012 Обзоры 33
  108. Luan X.Y., Liu X.B. Comparison the inhibitory effects of human bone marrow mesenchymal stem cells and human placenta mesenchymal stem cells on T cell proliferation. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2010; 26(9): 849-51.
  109. Corcione A., Benvenuto F., Ferretti E. et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006; 107: 367-72. 114. Le Blanc K., Ringden O. Immunomodulation by mesenchymal stem cells and clinical experience. J. Intern. Med. 2007; 262: 509- 25.
  110. Jiang X.X., Zhang Y., Liu B. et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105: 4120-26.
  111. Aggarwal S., Pittenger M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815-8.
  112. Waterman R.S., Tomchuck S.L., Henkle S.L., Betancourt A.M. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 2010; 5(4): e10088.
  113. Yagi H., Soto-Gutierrez A., Parekkadan B. et al. Mesenchymal stem cells: Mechanisms of immunomodulation and homing. Cell Transplant. 2010; 19(6): 667-79.
  114. Wen Z., Zheng S., Zhou C. et al. Repair mechanisms of bone marrow mesenchymal stem cells in myocardial infarction. J. Cell. Mol. Med. 2011; 15(5): 1032-43.
  115. Perl L., Weissler A., Mekori Y.A., Mor A. Cellular therapy in 2010: focus on autoimmune and cardiac diseases. Isr. Med. Assoc. J. 2010; 12(2): 110-5. 121. 121 Hirouchi M., Ukai Y. Current state on development of neuroprotective agents for cerebral ischemia. Nippon Yakurigaku Zasshi. 2002; 120(2): 107-13.
  116. Caplan A.I., Dennis J.E. Mesenchymal stem cells as trophic mediators. J. Cell Biochem. 2006; 98: 1076-84.
  117. Chen L., Tredget E.E., Wu P.Y., Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 2008; 3(4): e1886.
  118. Hwang J.H., Shim S.S., Seok O.S. et al. Comparison of cytokine expression in mesenchymal stem cells from human placenta, cord blood, and bone marrow. J. Korean Med. Sci. 2009; 24(4): 547-54.
  119. Rosland G.V., Svendsen A., Torsvik A. et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 2009; 69: 5331-9.
  120. Hirouchi M., Ukai Y. Current state on development of neuroprotective agents for cerebral ischemia. Nippon Yakurigaku Zasshi. 2002; 120(2): 107-13.
  121. Владимирская Е.Б. Мезенхимальные стволовые клетки (МСК) в клеточной терапии. Онкогематология 2007; 1: 4-16.
  122. Andrade P.Z., dos Santos F., Almeida-Porada G. et al. Systematic delineation of optimal cytokine concentrations to expand hematopoietic stem/progenitor cells in co-culture with mesenchymal stem cells. Mol. Biosyst. 2010; 6(7): 1207-15.
  123. Rubio D., Garcia-Castro J., Martin M.C. et al. Spontaneous human adult stem cell transformation. Cancer Res. 2005; 65: 3035- 39.
  124. Григорян А.С., Кругляков П.В., Таминкина Ю.А. и др. Спон- танное изменение фенотипа и кариотипа мезенхимных стволовых клеток человека в культуре. Материалы Всероссийской научной школы-конференции для молодежи: 21 - 26 сентября 2009 г. - М.: МАКС Пресс, 2009. - С. 23-4.
  125. Bieback K., Kern S., Kluter H. et al. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 2004; 22: 625-34.
  126. Laurent L.C., Ulitsky I., Slavin I. et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 2011; 8(1): 106-18.
  127. Markowski D.N., Winter N., Meyer F. et al. p14(Arf) acts as an antagonist of HMGA2 in senescence of mesenchymal stem cellsimplications for benign tumorigenesis. Genes Chromosomes Cancer 2011; 50(7): 489-98.
  128. Rubio D., Garcia S., Paz M.F. et al. Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS ONE 2008; 3: e1398.
  129. Jeon B.G., Kumar B.M., Kang E.J. et al. Characterization and comparison of telomere length, telomerase and reverse transcriptase activity and gene expression in human mesenchymal stem cells and cancer cells of various origins. Cell Tissue Res. 2011; 345(1): 149-61.
  130. Li Q., Hisha H., Takaki T. et al. Transformation potential of bone marrow stromal cells into undifferentiated high-grade pleomorphic sarcoma. J. Cancer Res. Clin. Oncol. 2010; 136(6): 829-38.
  131. Matushansky I., Hernando E., Socci N.D. et al. Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway. J Clin. Invest. 2007; 117: 3248-57.
  132. Riggi N., Cironi L., Provero P. et al. Expression of the FUSCHOP fusion protein in primary mesenchymal progenitor cells gives rise to a model of myxoid liposarcoma. Cancer Res. 2006; 66: 7016-23.
  133. Tirode F., Laud-Duval K., Prieur A. et al. Mesenchymal stem cell features of Ewing tumors. Cancer Cell 2007; 11: 421-29.
  134. Li N., Yang R., Zhang W. et al. Genetically transforming human mesenchymal stem cells to sarcomas: changes in cellular phenotype and multilineage differentiation potential. Cancer 2009; 115(20): 4795-806.
  135. Liu C., Chen Z., Chen Z. et al. Multiple tumor types may originate from bone marrow-derived cells. Neoplasia 2006; 8: 716-24.
  136. Rubio D., Garcia S., De la Cueva T. et al. Human mesenchymal stem cell transformation is associated with a mesenchymal-epithelial transition. Exp. Cell Res. 2008; 314: 691-8.
  137. Ladanyi M., Bridge J.A. Contribution of molecular genetic data to the classification of sarcomas. Hum. Pathol. 2000; 31: 532-8.
  138. Borden E.C., Baker L.H., Bell R.S. et al. Soft tissue sarcomas of adults: state of the translational science. Clin. Cancer. Res. 2003; 9: 1941-56.
  139. Blondheim N.R., Levy Y.S., Ben-Zur T. et al. Human mesenchymal stem cells express neural genes, suggesting a neural predisposition. Stem Cells Dev. 2006; 15: 141-64.
  140. Riggi N., Cironi L., Provero P. et al. Development of Ewing's sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Res. 2005; 65: 11459-68.
  141. Thompson L., Chang B., Barsky S.H. Monoclonal origins of malignant mixed tumors (carcinosarcomas). Evidence for a divergent histogenesis. Am. J. Surg. Pathol. 1996; 20: 277-85.
  142. Perez-Mancera P.A., Perez-Losada J., Sanchez-Martin M. et al. Expression of the FUS domain restores liposarcoma development in CHOP transgenic mice. Oncogene 2002; 21: 1679-84.
  143. Royer-Pokora B., Busch M., Beier M. et al. Wilms tumor cells with WT1 mutations have characteristic features of mesenchymal stem cells and express molecular markers of paraxial mesoderm. Hum Mol Genet. 2010; 19(9): 1651-68.
  144. Gibellini D., Alviano F., Miserocchi A. et al. HIV-1 and recombinant gp120 affect the survival and differentiation of human vessel wall-derived mesenchymal stem cells. Retrovirology 2011; 8: 40.
  145. Cotter E.J., Chew N., Powderly W.G., Doran P.P. HIV type 1 alters mesenchymal stem cell differentiation potential and cell phenotype ex vivo. AIDS Res. Hum. Retroviruses. 2011; 27(2): 187-99.
  146. Zhong Y.S., Lin N., Deng M.H. et al. Deficient proliferation of bone marrow-derived mesenchymal stem cells in patients with chronic hepatitis B viral infections and cirrhosis of the liver. Dig. Dis. Sci. 2010; 55(2): 438-45.
  147. Xie C., Zheng Y.B., Zhu H.P. et al. Human bone marrow mesenchymal stem cells are resistant to HBV infection during differentiation into hepatocytes in vivo and in vitro. Cell Biol. Int. 2009; 33(4): 493-500.
  148. Sundin M., Lindblom A., Orvell C. et al. Persistence of human parvovirus B19 in multipotent mesenchymal stromal cells expressing the erythrocyte P antigen: implications for transplantation. Biol. Blood Marrow Transplant. 2008; 14(10): 1172-9. 155. Rollín R., Alvarez-Lafuente R., Marco F. et al. Human parvovirus B19,varicella zoster virus, and human herpesvirus-6 in mesenchymal stem cells of patients with osteoarthritis: analysis with quantitative real-time polymerase chain reaction. Osteoarthritis Cartilage 2007; 15(4): 475-8.
  149. Pessina A., Bonomi A., Coccè V. et al. Assessment of human herpesvirus-6 infection in mesenchymal stromal cells ex vivo expanded for clinical use. Transpl. Infect. Dis. 2009; 11(6): 491-6.
  150. Sundin M., Orvell C., Rasmusson I. et al. Mesenchymal stem cells are susceptible to human herpesviruses, but viral DNA cannot be detected in the healthy seropositive individual. Bone Marrow Transplant. 2006; 37(11): 1051-9.
  151. Meisel R., Brockers S., Heseler K. et al. Human but not murine multipotent mesenchymal stromal cells exhibit broadspectrum antimicrobial effector function mediated by indoleamine 2,3- dioxygenase. Leukemia 2011; 25(4): 648-54.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies