Membrane microvesicles: biological properties and involvement in pathogenesis of diseases

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Microvesicles (MV) — membrane vesicles, which are released from surface of cells under normal conditions as well as in response to stimulation or destruction of cells (platelets, erythrocytes, leukocytes, endothelial cells, transformed cells, etc.). For a long time it was believed that MV do not play a significant role and were considered to be inert «waste», released by cells during their life, but accumulating evidence indicates the important role of MV in different physiological and pathological processes. To date, the databases PUBMED, OMIM and GENE accumulated a large number of publications devoted to the study of the ability of microvesicles to carry a variety of biologically active substances (lipids, proteins, nucleic acids, etc), the use of microvesicles as diagnostic markers and the influence of membrane microvesicles on the development of various diseases.

Full Text

Restricted Access

About the authors

M. O Gomzikova

Kazan (Volga Region) Federal University, Kazan

R. F Gaifullina

Kazan (Volga Region) Federal University, Kazan

I. G Mustafin

Kazan State Medical University, Kazan

V. M Chernov

Kazan Institute of Biochemistry and Biophysics of KazSC RAS, Kazan

Z. R Miftahova

Kazan State Medical University, Kazan

AS. S Galyavich

Kazan State Medical University, Kazan

A. A Rizvanov

Kazan (Volga Region) Federal University, Kazan

References

  1. Wolf P. The nature and significance of platelet products in human plasma. Br. J. Haematol. 1967; 13(3): 269—88.
  2. Puddu P., Puddu G.M., Cravero E. et al. The involvement of circulating microparticles in inflammation, coagulation and cardiovascular diseases. Can. J. Cardiol. 2010; 26(4): 140—5.
  3. Sturk N.R. Cell derived vesicles in health and disease. Ned. Tijdschr. Klin. Chem. Labgeneesk. 2012; 37: 65—8.
  4. VanWijk M.J., VanBavel E., Sturk A. et al. Microparticles in cardiovascular diseases. Cardiovasc. Res. 2003; 59(2): 277—87.
  5. Hugel B., Martinez M.C., Kunzelmann C. et al. Membrane microparticles: two sides of the coin. Physiology. 2005; 20: 22—7.
  6. Shai E., Varon D. Development, cell differentiation, angiogenesis-microparticles and their roles in angiogenesis. Arterioscler Thromb Vasc Biol. 2011; 31(1): 10-4.
  7. Morel O., Morel N., Freyssinet J.M. et al. Platelet microparticles and vascular cells interactions: a checkpoint between the haemostatic and thrombotic responses. Platelets 2008; 19(1): 9-23.
  8. Anderson C., Garimella R. Role of extracellular membrane vesicles in the pathogenesis of various diseases, including cancer, renal diseases, atherosclerosis, and arthritis. Laboratory Investigation 2010; 90: 1549-57.
  9. Chironi G.N., Boulanger C.M., Simon A. et al. Endothelial microparticles in diseases. Cell Tissue Res. 2009; 335(1): 143-51.
  10. Jimenez J.J., Jy W., Mauro L.M. et al. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb. Res. 2003; 109t4): 175-80.
  11. Leroyer A.S., Anfosso F., Lacroix R. et al. Endothelial-derived microparticles: Biological conveyors at the crossroad of inflammation, thrombosis and angiogenesis. Thromb. Haemost. 2010; 104(3): 456-63.
  12. Morel O., Toti F., Hugel B. et al. Procoagulant microparticles: disrupting the vascular homeostasis equation? Arterioscler. Thromb. Vasc. Biol. 2006; 26(12): 2594-604.
  13. Tetta C., Bruno S., Fonsato V. et al. The role of microvesicles in tissue repair. Organogenesis 2011; 7(2): 105-15.
  14. Muralidharan-Chari V., Sedgwick A., D'Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J. Cell Science 2010; 123: 1603-11.
  15. Freyssinet J.M., Toti F. Formation of procoagulant microparticles and properties. Thromb. Res. 2010; 125(Suppl 1): 46-8.
  16. Manno S., Takakuwa Y., Mohandas N. Identification of a functional role for lipid asymmetry in biological membranes: Phosphatidylserine-skeletal protein interactions modulate membrane stability. PNAS USA 2002; 99(4): 1943-8.
  17. Daleke D.L. Regulation of transbilayer plasma membrane phospholipid asymmetry. J. Lipid. Res. 2003; 44(2): 233-42.
  18. Morel O., Jesel L., Freyssinet J.M. et al. Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler. Thromb. Vasc. Biol. 2011; 31(1): 15-26.
  19. Azevedo L. Microparticles and exosomes: are they part of important pathways in sepsis pathophysiology? Intechopen 2012; 155-166.
  20. Mostefai H.A., Andriantsitohaina R., Martinez M.C. Plasma membrane microparticles in angiogenesis: role in ischemic diseases and in cancer. Physiol. Res. 2008; 57(3): 311-20.
  21. Lacroix R., Sabatier F., Mialhe A. et al. Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro. Blood 2007; 110(7): 2432-9.
  22. Mezentsev A., Merks R.M., O'Riordan E. et al. Endothelial microparticles affect angiogenesis in vitro: role of oxidative stress. Am. J. Physiol. Heart Circ. Physiol. 2005; 289(3): 1106-14.
  23. Mostefai H.A., Agouni A., Carusio N. et al. Phosphatidylinositol 3-kinase and xanthine oxidase regulate nitric oxide and reactive oxygen species productions by apoptotic lymphocyte microparticles in endothelial cells. J. Immunol. 2008; 180(7): 5028-35.
  24. Kim H.K., Song K.S., Chung J.H. et al. Platelet microparticles induce angiogenesis in vitro. Br. J. Haematol. 2004; 124(3): 376-84.
  25. Yang C., Mwaikambo B.R., Zhu T. et al. Lymphocytic microparticles inhibit angiogenesis by stimulating oxidative stress and negatively regulating VEGF-induced pathways. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008; 294(2): 467-76.
  26. Deregibus M.C., Cantaluppi V., Calogero R. et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 2007; 110(7): 2440-8.
  27. Sinauridze E.I., Kireev D.A., Popenko N.Y. et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb. Haemost. 2007; 97(3): 425-34.
  28. Biro E., Sturk-Maquelin K.N., Vogel G.M. et al. Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner. J. Thromb. Haemost. 2003; 1(12): 2561-8.
  29. Shet A.S., Aras O., Gupta K. et al. Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 2003; 102(7): 2678-83.
  30. Perez-Casal М., Downey C., Cutillas-Moreno B. et al. Microparticle-associated endothelial protein C receptor and the induction of cytoprotective and anti-inflammatory effects. Haematologica 2009; 94(3): 387-94.
  31. Esmon C.T. The protein C pathway. Chest 2003; 124(3 Suppl): 26-32.
  32. Mallat Z., Benamer H., Hugel B., et al. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 2000; 101(8): 841-3.
  33. Leroyer A.S., Isobe H., Leseche G. et al. Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques. J. Am. Coll. Cardiol. 2007; 49(7): 772-7.
  34. Kahn I Z.-F.D., Karpatkin S Microthrombocytis and platelet fragmentation associated with idiopathic/autoimmune thrombocytopenic purpura. Br. J. Haematol. 1975; 31: 449-60.
  35. Cherian P., Hankey G.J., Eikelboom J.W. et al. Endothelial and platelet activation in acute ischemic stroke and its etiological subtypes. Stroke 2003; 34(9): 2132-7.
  36. Bal L., Ederhy S., Di Angelantonio E. et al. Circulating procoagulant microparticles in acute pulmonary embolism: a case-control study. Int. J. Cardiol. 2010; 145(2): 321-2.
  37. Azzam H., Zagloul M. Elevated platelet microparticle levels in valvular atrial fibrillation. Hematology 2009; 14(6): 357-60.
  38. Flores-Nascimento M.C., Beltrame M.P., De Paula E.V. et al. Microparticles in deep venous thrombosis, antiphospholipid syndrome and Factor V Leiden. Platelets 2009; 20(6): 367-75.
  39. Bernal-Mizrachi L., Jy W., Fierro C. et al. Endothelial microparticles correlate with high-risk angiographic lesions in acute coronary syndromes. Int. J. Cardiol. 2004; 97(3): 439-46.
  40. Shantsila E., Kamphuisen P.W., Lip G.Y. Circulating microparticles in cardiovascular disease: implications for atherogenesis and atherothrombosis. J. Thromb. Haemost. 2010; 8(11): 2358-68.
  41. Amabile N., Guerin A.P., Leroyer A. et al. Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. J. Am. Soc. Nephrol. 2005; 16(11): 3381-8.
  42. Viera A.J., Mooberry M., Key N.S. Microparticles in cardiovascular disease pathophysiology and outcomes. J. Am. Soc. Hypertens. 2012; 6(4): 243-52.
  43. Huang P.H., Huang S.S., Chen Y.H. et al. Increased circulating CD31 +/annexin V+ apoptotic microparticles and decreased circulating endothelial progenitor cell levels in hypertensive patients with microalbuminuria. J. Hypertens. 2010; 28(8): 1655-65.
  44. Wang J.M., Su C., Wang Y. et al. Elevated circulating endothelial microparticles and brachial-ankle pulse wave velocity in well-controlled hypertensive patients. J. Hum. Hypertens. 2009; 23(5): 307-15.
  45. Naghavi M., Libby P., Falk E. et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 2003; 108(14): 1664-72.
  46. Bulut D., Maier K., Bulut-Streich N. et al. Circulating endothelial microparticles correlate inversely with endothelial function in patients with ischemic left ventricular dysfunction. J. Card. Fail. 2008; 14(4): 336-40.
  47. van der Zee P.M., Biro E., Ko Y. et al. P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction. Clin. Chem. 2006; 52(4): 657-64.
  48. Bernal-Mizrachi L., Jy W., Jimenez J.J. et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am. Heart J. 2003; 145(6): 962-70.
  49. Koga H., Sugiyama S., Kugiyama K. et al. Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J. Am. Coll. Cardiol. 2005; 45(10): 1622-30.
  50. Sabatier F., Camoin-Jau L., Anfosso F. et al. Circulating endothelial cells, microparticles and progenitors: key players towards the definition of vascular competence. J. Cell. Mol. Med. 2009; 13(3): 454-71.
  51. Pirro M., Schillaci G., Paltriccia R. et al. Increased ratio of CD31+/CD42- microparticles to endothelial progenitors as a novel marker of atherosclerosis in hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 2006; 26(11): 2530-5.
  52. Wang J.M., Yang Z., Xu M.G. et al. Berberine-induced decline in circulating CD31 +/CD42- microparticles is associated with improvement of endothelial function in humans. Eur. J. Pharmacol. 2009; 614(1-3): 77-8

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies