Membrane microvesicles: biological properties and involvement in pathogenesis of diseases
- Authors: Gomzikova M.O1, Gaifullina R.F1, Mustafin I.G2, Chernov V.M3, Miftahova Z.R2, Galyavich A.S2, Rizvanov A.A1
-
Affiliations:
- Kazan (Volga Region) Federal University, Kazan
- Kazan State Medical University, Kazan
- Kazan Institute of Biochemistry and Biophysics of KazSC RAS, Kazan
- Issue: Vol 8, No 1 (2013)
- Pages: 6-11
- Section: Articles
- URL: https://genescells.ru/2313-1829/article/view/121588
- DOI: https://doi.org/10.23868/gc121588
- ID: 121588
Cite item
Abstract
Full Text

About the authors
M. O Gomzikova
Kazan (Volga Region) Federal University, Kazan
R. F Gaifullina
Kazan (Volga Region) Federal University, Kazan
I. G Mustafin
Kazan State Medical University, Kazan
V. M Chernov
Kazan Institute of Biochemistry and Biophysics of KazSC RAS, Kazan
Z. R Miftahova
Kazan State Medical University, Kazan
AS. S Galyavich
Kazan State Medical University, Kazan
A. A Rizvanov
Kazan (Volga Region) Federal University, Kazan
References
- Wolf P. The nature and significance of platelet products in human plasma. Br. J. Haematol. 1967; 13(3): 269—88.
- Puddu P., Puddu G.M., Cravero E. et al. The involvement of circulating microparticles in inflammation, coagulation and cardiovascular diseases. Can. J. Cardiol. 2010; 26(4): 140—5.
- Sturk N.R. Cell derived vesicles in health and disease. Ned. Tijdschr. Klin. Chem. Labgeneesk. 2012; 37: 65—8.
- VanWijk M.J., VanBavel E., Sturk A. et al. Microparticles in cardiovascular diseases. Cardiovasc. Res. 2003; 59(2): 277—87.
- Hugel B., Martinez M.C., Kunzelmann C. et al. Membrane microparticles: two sides of the coin. Physiology. 2005; 20: 22—7.
- Shai E., Varon D. Development, cell differentiation, angiogenesis-microparticles and their roles in angiogenesis. Arterioscler Thromb Vasc Biol. 2011; 31(1): 10-4.
- Morel O., Morel N., Freyssinet J.M. et al. Platelet microparticles and vascular cells interactions: a checkpoint between the haemostatic and thrombotic responses. Platelets 2008; 19(1): 9-23.
- Anderson C., Garimella R. Role of extracellular membrane vesicles in the pathogenesis of various diseases, including cancer, renal diseases, atherosclerosis, and arthritis. Laboratory Investigation 2010; 90: 1549-57.
- Chironi G.N., Boulanger C.M., Simon A. et al. Endothelial microparticles in diseases. Cell Tissue Res. 2009; 335(1): 143-51.
- Jimenez J.J., Jy W., Mauro L.M. et al. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb. Res. 2003; 109t4): 175-80.
- Leroyer A.S., Anfosso F., Lacroix R. et al. Endothelial-derived microparticles: Biological conveyors at the crossroad of inflammation, thrombosis and angiogenesis. Thromb. Haemost. 2010; 104(3): 456-63.
- Morel O., Toti F., Hugel B. et al. Procoagulant microparticles: disrupting the vascular homeostasis equation? Arterioscler. Thromb. Vasc. Biol. 2006; 26(12): 2594-604.
- Tetta C., Bruno S., Fonsato V. et al. The role of microvesicles in tissue repair. Organogenesis 2011; 7(2): 105-15.
- Muralidharan-Chari V., Sedgwick A., D'Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J. Cell Science 2010; 123: 1603-11.
- Freyssinet J.M., Toti F. Formation of procoagulant microparticles and properties. Thromb. Res. 2010; 125(Suppl 1): 46-8.
- Manno S., Takakuwa Y., Mohandas N. Identification of a functional role for lipid asymmetry in biological membranes: Phosphatidylserine-skeletal protein interactions modulate membrane stability. PNAS USA 2002; 99(4): 1943-8.
- Daleke D.L. Regulation of transbilayer plasma membrane phospholipid asymmetry. J. Lipid. Res. 2003; 44(2): 233-42.
- Morel O., Jesel L., Freyssinet J.M. et al. Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler. Thromb. Vasc. Biol. 2011; 31(1): 15-26.
- Azevedo L. Microparticles and exosomes: are they part of important pathways in sepsis pathophysiology? Intechopen 2012; 155-166.
- Mostefai H.A., Andriantsitohaina R., Martinez M.C. Plasma membrane microparticles in angiogenesis: role in ischemic diseases and in cancer. Physiol. Res. 2008; 57(3): 311-20.
- Lacroix R., Sabatier F., Mialhe A. et al. Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro. Blood 2007; 110(7): 2432-9.
- Mezentsev A., Merks R.M., O'Riordan E. et al. Endothelial microparticles affect angiogenesis in vitro: role of oxidative stress. Am. J. Physiol. Heart Circ. Physiol. 2005; 289(3): 1106-14.
- Mostefai H.A., Agouni A., Carusio N. et al. Phosphatidylinositol 3-kinase and xanthine oxidase regulate nitric oxide and reactive oxygen species productions by apoptotic lymphocyte microparticles in endothelial cells. J. Immunol. 2008; 180(7): 5028-35.
- Kim H.K., Song K.S., Chung J.H. et al. Platelet microparticles induce angiogenesis in vitro. Br. J. Haematol. 2004; 124(3): 376-84.
- Yang C., Mwaikambo B.R., Zhu T. et al. Lymphocytic microparticles inhibit angiogenesis by stimulating oxidative stress and negatively regulating VEGF-induced pathways. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008; 294(2): 467-76.
- Deregibus M.C., Cantaluppi V., Calogero R. et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 2007; 110(7): 2440-8.
- Sinauridze E.I., Kireev D.A., Popenko N.Y. et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb. Haemost. 2007; 97(3): 425-34.
- Biro E., Sturk-Maquelin K.N., Vogel G.M. et al. Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner. J. Thromb. Haemost. 2003; 1(12): 2561-8.
- Shet A.S., Aras O., Gupta K. et al. Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 2003; 102(7): 2678-83.
- Perez-Casal М., Downey C., Cutillas-Moreno B. et al. Microparticle-associated endothelial protein C receptor and the induction of cytoprotective and anti-inflammatory effects. Haematologica 2009; 94(3): 387-94.
- Esmon C.T. The protein C pathway. Chest 2003; 124(3 Suppl): 26-32.
- Mallat Z., Benamer H., Hugel B., et al. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 2000; 101(8): 841-3.
- Leroyer A.S., Isobe H., Leseche G. et al. Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques. J. Am. Coll. Cardiol. 2007; 49(7): 772-7.
- Kahn I Z.-F.D., Karpatkin S Microthrombocytis and platelet fragmentation associated with idiopathic/autoimmune thrombocytopenic purpura. Br. J. Haematol. 1975; 31: 449-60.
- Cherian P., Hankey G.J., Eikelboom J.W. et al. Endothelial and platelet activation in acute ischemic stroke and its etiological subtypes. Stroke 2003; 34(9): 2132-7.
- Bal L., Ederhy S., Di Angelantonio E. et al. Circulating procoagulant microparticles in acute pulmonary embolism: a case-control study. Int. J. Cardiol. 2010; 145(2): 321-2.
- Azzam H., Zagloul M. Elevated platelet microparticle levels in valvular atrial fibrillation. Hematology 2009; 14(6): 357-60.
- Flores-Nascimento M.C., Beltrame M.P., De Paula E.V. et al. Microparticles in deep venous thrombosis, antiphospholipid syndrome and Factor V Leiden. Platelets 2009; 20(6): 367-75.
- Bernal-Mizrachi L., Jy W., Fierro C. et al. Endothelial microparticles correlate with high-risk angiographic lesions in acute coronary syndromes. Int. J. Cardiol. 2004; 97(3): 439-46.
- Shantsila E., Kamphuisen P.W., Lip G.Y. Circulating microparticles in cardiovascular disease: implications for atherogenesis and atherothrombosis. J. Thromb. Haemost. 2010; 8(11): 2358-68.
- Amabile N., Guerin A.P., Leroyer A. et al. Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. J. Am. Soc. Nephrol. 2005; 16(11): 3381-8.
- Viera A.J., Mooberry M., Key N.S. Microparticles in cardiovascular disease pathophysiology and outcomes. J. Am. Soc. Hypertens. 2012; 6(4): 243-52.
- Huang P.H., Huang S.S., Chen Y.H. et al. Increased circulating CD31 +/annexin V+ apoptotic microparticles and decreased circulating endothelial progenitor cell levels in hypertensive patients with microalbuminuria. J. Hypertens. 2010; 28(8): 1655-65.
- Wang J.M., Su C., Wang Y. et al. Elevated circulating endothelial microparticles and brachial-ankle pulse wave velocity in well-controlled hypertensive patients. J. Hum. Hypertens. 2009; 23(5): 307-15.
- Naghavi M., Libby P., Falk E. et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 2003; 108(14): 1664-72.
- Bulut D., Maier K., Bulut-Streich N. et al. Circulating endothelial microparticles correlate inversely with endothelial function in patients with ischemic left ventricular dysfunction. J. Card. Fail. 2008; 14(4): 336-40.
- van der Zee P.M., Biro E., Ko Y. et al. P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction. Clin. Chem. 2006; 52(4): 657-64.
- Bernal-Mizrachi L., Jy W., Jimenez J.J. et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am. Heart J. 2003; 145(6): 962-70.
- Koga H., Sugiyama S., Kugiyama K. et al. Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J. Am. Coll. Cardiol. 2005; 45(10): 1622-30.
- Sabatier F., Camoin-Jau L., Anfosso F. et al. Circulating endothelial cells, microparticles and progenitors: key players towards the definition of vascular competence. J. Cell. Mol. Med. 2009; 13(3): 454-71.
- Pirro M., Schillaci G., Paltriccia R. et al. Increased ratio of CD31+/CD42- microparticles to endothelial progenitors as a novel marker of atherosclerosis in hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 2006; 26(11): 2530-5.
- Wang J.M., Yang Z., Xu M.G. et al. Berberine-induced decline in circulating CD31 +/CD42- microparticles is associated with improvement of endothelial function in humans. Eur. J. Pharmacol. 2009; 614(1-3): 77-8
