Formation of the recombinant adenovirus encoding codon-optimized dysferlin gene and analysisof the recombinant protein expression in cell culture in vitro

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Dysferlinopathies belong to neuromuscular diseases
associated with aberrant expression and/or function of
dysferlin protein in skeletal muscle, which is caused by
mutations in the dysf (dystrophy-associated fer-1-like, DYSF)
gene. Because of the large size of the codon-optimized dysf
coding region (6243 bp), adenoviral vectors are suitable for
the creation of genetic constructs, which are capable of
delivering a large amount of recombinant genetic information
into both dividing and non-dividing cells, as well as provide a
high level of transgene expression.
We generated a recombinant adenovirus serotype
5 encoding a codon-optimized gene for human dysferlin (Ad5-
Dysf) and analysed recombinant protein expression in vitro in
HEK-293T cell line.

About the authors

I G Starostina

Kazan (Volga region) federal university, Kazan

Kazan (Volga region) federal university, Kazan

V V Solovyeva

Kazan (Volga region) federal university, Kazan

Kazan (Volga region) federal university, Kazan

K G Shevchenko

Human Stem Cells Institute, Moscow

Human Stem Cells Institute, Moscow

R V Deev

Human Stem Cells Institute, Moscow

Human Stem Cells Institute, Moscow

A A Isaev

Human Stem Cells Institute, Moscow

Human Stem Cells Institute, Moscow

A A Rizvanov

Kazan (Volga region) federal university, Kazan

Kazan (Volga region) federal university, Kazan

References

  1. Bushby K.M. Making sense of the limb-girdle muscular dystrophies. Brain 1999; 122: 1403-20.
  2. Liu J., Aoki M., Illa I. et al. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat. Genet. 1998; 20(1): 31-6.
  3. Bashir R., Strachan T., Keers S. et al., A gene for autosomal recessive limb-girdle muscular dystrophy maps to chromosome 2p. Hum. Mol. Genet. 1994; 3(3): 455-7.
  4. Therrien C., Dodig D., Karpati G. et al. Mutation impact on dysferlin inferred from database analysis and computer-based structural predictions. J. Neurol. Sci. 2006; 250(1-2): 71-8.
  5. Fujita E., Kouroku Y., Isoai A. et al., Two endoplasmic reticulumassociated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/ lysosome ERAD(II). Hum. Mol. Genet. 2007; 16(6): 618-29.
  6. Davis D.B., Doherty K.R., Delmonte A.J. et al. Calcium-sensitive phospholipid binding properties of normal and mutant ferlin C2 domains.
  7. J. Biol. Chem. 2002; 277(25): 22883-8.
  8. Bansal D., Miyake K., Vogel S.S. et al., Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 2003; 423(6936): 168-72.
  9. Lennon N.J., Kho A., Bacskai B.J. et al., Dysferlin interacts with annexins A1 and A2 and mediates sarcolemmal wound-healing. J. Biol. Chem. 2003; 278(50): 50466-73.
  10. Bashir R., Britton S., Strachan T. et al. A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limbgirdle muscular dystrophy type 2B. Nat. Genet. 1998; 20(1): 37-42.
  11. Aoki M., Liu J., Richard I. et al. Genomic organization of the dysferlin gene and novel mutations in Miyoshi myopathy. Neurology 2001; 57(2): 271-8.
  12. Guglieri M., Magri F., D'Angelo M.G. et al. Clinical, molecular, and protein correlations in a large sample of genetically diagnosed Italian limb girdle muscular dystrophy patients. Hum. Mutat. 2008; 29(2): 258-66.
  13. Vetrini F., Ng P. Gene therapy with helper-dependent adenoviral vectors: current advances and future perspectives. Viruses 2010; 2(9): 1886-917.
  14. Dudley R.W., Lu Y., Gilbert R. et al. Sustained improvement of muscle function one year after full-length dystrophin gene transfer into mdx mice by a gutted helper-dependent adenoviral vector. Hum. Gene Ther. 2004; 15(2): 145-56.
  15. Jiang Z., Feingold E., Kochanek S. et al. Systemic delivery of a high-capacity adenoviral vector expressing mouse CTLA4Ig improves skeletal muscle gene therapy. Mol. Ther. 2002; 6(3): 369-76.
  16. Roth J.A., Cristiano R.J. Gene therapy for cancer: what have we done and where are we going? J. Natl. Cancer Inst. 1997; 89(1): 21-39.
  17. Cohen S.N., Chang A.C., Hsu L. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. PNAS USA 1972; 69(8): 2110-4.
  18. Sambrook J., Russell D.W. Molecular cloning: a laboratory manual. 3 ed. Cold Spring Harbor Laboratory Press; 2001.
  19. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227(5259): 680-5.
  20. Graham F.L., Smiley J., Russell W.C. et al. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 1977; 36(1): 59-74.
  21. Harrison T., Graham F., Williams J. Host-range mutants of adenovirus type 5 defective for growth in HeLa cells. Virology 1977; 77(1): 319-29.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies