Effect of simultaneous expression of various usoforms of vascular endothelial growth factor VEGF and fibroblast growth factor FGF2 on proliferation of human umbilical cord blood cells HUVEC



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Transplantation of stem cells, progenitor and differentiated cells is currently actively investigated as an approach for correcting degenerative diseases. However the mechanisms of therapeutic effect of cell therapy remains poorly understood. Nowadays a theory of paracrine stimulation of regeneration processes by transplanted cells through secretion of trophic and growth factors gains a particular popularity. Genetic modification of cells prior to transplantation allows efficient expression and targeted delivery of various therapeutic factors. The use of plasmid expression vectors are considered to be one of the safest and promising approaches for genetic modification of cells. We report generation of genetic constructs based on expression plasmid pBudCE4.1 [containing two independent expression cassettes] encoding different isoforms of human vascular endothelial growth factor (VEGFJ and basic fibroblast growth factor CFGF2). Expression of recombinant proteins was confirmed by immunoblotting and immunochistochemistry. We demonstrated that genetic modification of model cell line HEK293 by our expression plasmids resulted in paracrine stimulation of human umbilical vein endothelial cells CHUVECJ proliferation in vitro.

About the authors

I I Salafutdinov

A K Shafigullina

M E Yalvach

N V Kudryashova

M A Lagar'kova

M V Shutova

S P Kiselev

R F Masgutov

R I Zhdanov

A L Kiyasov

P P Islamov

A A Rizvanov

I I Salafutdinov

Kazan Federal University, Kazan

Kazan Federal University, Kazan

A K Shafigullina

Kazan State Medical University, Kazan

Kazan State Medical University, Kazan

M E Yalvac

Yeditepe University, Istanbul, Turkey

Yeditepe University, Istanbul, Turkey

N V Kudryashova

Kazan Federal University, Kazan

Kazan Federal University, Kazan

M A Lagarkova

Vavilov Institute of General Genetics RAS, Moscow«LKT» Ltd., Moscow

Vavilov Institute of General Genetics RAS, Moscow«LKT» Ltd., Moscow

M V Shutova

Vavilov Institute of General Genetics RAS, Moscow«LKT» Ltd., Moscow

Vavilov Institute of General Genetics RAS, Moscow«LKT» Ltd., Moscow

S L Kiselev

Vavilov Institute of General Genetics RAS, Moscow

Vavilov Institute of General Genetics RAS, Moscow

R E Masgutov

Kazan Federal University, KazanKazan State Medical University, Kazan

Kazan Federal University, KazanKazan State Medical University, Kazan

R I Zhdanov

Kazan Federal University, KazanYeditepe University, Istanbul, TurkeyInstitute of general pathology and pathophysiology RAMS, Moscow

Kazan Federal University, KazanYeditepe University, Istanbul, TurkeyInstitute of general pathology and pathophysiology RAMS, Moscow

А Р Kiyasov

Kazan State Medical University, Kazan

Kazan State Medical University, Kazan

R R Islamov

Kazan State Medical University, Kazan

Kazan State Medical University, Kazan

A A Rizvanov

Kazan Federal University, KazanKazan State Medical University, KazanYeditepe University, Istanbul, Turkey

Kazan Federal University, KazanKazan State Medical University, KazanYeditepe University, Istanbul, Turkey

References

  1. Folkman J. Tumour angiogenesis: therapeutic implications. N. Engl. J. Med. 1971; 285: 1182-6.
  2. Gradin K., McGuire J., Wenger R.H. et al. Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the ARNT transcription factor. Mol. Cell. Biol. 1996; 16: 5221-31.
  3. Huang L.E., Arany Z., Livingston D.M. et al. Activation of hypoxia-nducible transcription factor depends primarily upon redox-sensitive stabilization of its -subunit. J. Biol. Chem. 1996; 271: 32253-59.
  4. Kuwabara K., Ogawa S., Matsumoto M. Hypoxia mediated induction of acidic basic fibroblast growth factor and platlet-derived growth factor in mono nuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc. Nat. Acad. Sci. USA 1995; 92: 4606-10.
  5. Forsythe J.A., Jiang B.H., Iyer N.V. et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biology. 1996; 16: 4604-13.
  6. Dvorak H.F., Dvorak A.M., Manseau E.J. et al. Fibrin gel investment associated with line 1 and 10 solid tumor growth, angiogenesis, and fibroplasia in guinea pigs. Role of cellular immunity, myofibroblasts, microvascular damage, and infarction in line 1 tumor regression. J. Natl. Cancer Inst. 1979; 62: 1459-72.
  7. Ferrara N., Houck K., Jakeman L. et al. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr. Rev. 1992; 13: 18-32.
  8. Ferrara N., Gerber H.P, LeCouter J. The biology of VEGF and its receptors. Nature Medicine 2003; 6: 669-76.
  9. Robinson J.С The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J. of Cell Science 2001; 5: 853-65.
  10. Yamazaki Y. Molecular and functional diversity of vascular endothelial growth factors. Mol. Div. 2006; 10: 515-27.
  11. Yoo P.S. Post-transcriptional regulation of vascular endothelial growth factor: Implications for tumor angiogenesis. World J. Gastroenterol. 2006; 12: 4937-42.
  12. Bogaert E. Vascular endothelial growth factor in amyotrophic lateral sclerosis and other neurodegenerative diseases. Muscle S. Nerve 2006; 34: 391-405.
  13. Whittle С Heterogeneous vascular endothelial growth factor [VEGF) isoform mRNA and receptor mRNA expression in human glomeruli, and the identification of VEGF148 mRNA, a novel truncated splice variant. Clinical Science 1999; 97: 303-12.
  14. Armelin H.A. Pituitary Extracts and Steroid Hormones in the Control of 3T3 Cell Growth. PNAS 1973; 70: 2702-6.
  15. Ornitz, D. M. and Itoh, N. Fibroblast growth factors. Genome Biology 2001; 2(3): 3001-12.
  16. Schweigerer L, Neufeld G., Friedman J. Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth. Nature 1987; 325: 257-259.
  17. Van den Berghe L, Laurell H., Isabelle H. et al. FIF [Fibroblast Growth Factor-2 (FGF-2)-lnteracting-Factor], a Nuclear Putatively Antiapoptotic Factor, interacts specifically with FGF. Mol. Endocrinol. 2000; 14 (11): 1709-24.
  18. Bugler В., Amalric F., Prats H. Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor. Mol. Cell. Biol. 1991; 11: 573-7.
  19. Парфенова E.B., Ткачук В.А. Перспективы генной терапии сердечно-сосудистых заболеваний. Вопр. мед. хим. 2000; 46: 293-310.
  20. Sabti Н. Therapeutic angiogenesis in cardiovascular disease. J. of Cardiothoracic Surg. 2007; 2: 49-56.
  21. Kano M.R., Morishita Y., Iwata С et al. VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B- PDGFR beta signaling. J. Cell Sci. 2005; 118: 3759-68.
  22. Ley C, Olsen M., Lund E. et al. Angiogenic synergy of bFGF and VEGF is antagonized by angiopoietin-2 in a modified in vivo Matrigel assay. Microvasc. Res. 2004; 68: 161-8.
  23. Pepper M.S., Ferrarab N., Orcib L. et al. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem. Biophys. Res. Commun. 1992; 189(2): 824-31.
  24. Ikeda Y., Fukuda N., Wada M. et al. Development of Angiogenic Cell and Gene Therapy by Transplantation of Umbilical Cord Blood with Vascular Endothelial Growth Factor Gene. Hypertens. Res. 2004; 27(2): 119-128.
  25. Chen H.K., Hung H.F., Shyu K.G. et al. Combined cord blood stem cells and gene therapy enhances angiogenesis and improves cardiac performance in mouse after acute myocardial infarction. Eur. J. Clin. Invest. 2005; 35: 677-86.
  26. Lu F., Li J., Gao J. et al. Improvement of the Survival of Human Autologous Fat Transplantation by Using VEGF-Transfected Adipose-Derived Stem Cells Plastic and Reconstructive Surgery 2009; 124(5): 1437-46.
  27. <http://www.ncbi.nlm.nih.gov/Genbank>
  28. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227(5259): 680-5.
  29. Onda Т., Honmou 0., Harada K. et al. Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia J. Cereb. Blood Flow Metab. 2008; 28(2): 329-40.
  30. Rizvanov A.A., Kiyasov A.P., Gaziziov I.M., et al. Human umbilical cord blood cells transfected with VEGF, L1CAM do not differentiate into neurons but transform into vascular endothelial cells and secrete neurotrophic factors to support neuro-genesis - a novel approach in stem cell therapy. Neurochemistry International. 2008; 53: 389-94.
  31. Smadja D.M., Cornet A., Emmerich J. et al. Endothelial progenitor cells: characterization, in vitro expansion, and prospects for autologous cell therapy. Cell Biol. Toxicol. 2007; 23(4): 223-39.
  32. Chen X., Li Y., Wang L. et al. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 2002; 22: 275-9.
  33. Rophael J.A., Craf R.O., Palmer J.A. et al. Angiogenic Growth Factor Synergism in a Murine Tissue Engineering Model of Angiogenesis and Adipogenes. Am. J. Pathol. 2007; 171(6): 2048-57.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2010 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies