Ekspressiya genov, transfitsirovannykh v mezenkhimnye stvolovye kletki cheloveka

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


В статье представлен обзор о способах трансфекции МСК и их эффективности. Проведен анализ экспрессии трансфицированных генов при стабильной и транзиторной трансфекции. Указаны возможные причины снижения экспрессия трансгенов и пути ее повышения.

About the authors

S A Smirnikhina

Email: smirnikhinas@gmail.com


  1. Riordan N.H., IchimT.E., Min W.-P. et al. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. Journal of Translational Medicine 2009; 7: 29.
  2. Psaltis P.J., Zannettino A.C.W., Worthley S.G. et al. Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells. 2008; 26: 2201-10.
  3. Yoshimura K., Sato K., Aoi N. et al. Cell-Assisted Lipotransfer for Cosmetic Breast Augmentation: Supportive Use of Adipose-Derived Stem/Stromal Cells. Aesth Plast Surg. 2008; 32: 48-55.
  4. Schaffler A., Buchler C. Concise review: adipose tissue-derived stromal cells - basic and clinical implications for novel cell-based therapies. Stem Cells 2007; 25: 818-27.
  5. Мусина P.А., Бекчанова E.C., Сухих Г.Т. Сравнительная характеристика мезенхимных стволовых клеток, полученная из разных тканей человека. Клеточные технологии в биологии и медицине. 2005; 2: 89-94.
  6. Тепляшин А.С., Коржикова С.В., Шарифуллина С.З. и др. Характеристика мезенхимных стволовых клеток человека, выделенных из костного мозга и жировой ткани. Цитология 2005; 47 (2): 130-5.
  7. Astori G., Vignati F., Bardelli S. et al. «In vitro» and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. J Transl Med. 2007; 5: 55.
  8. Zuk P.A., Zhu M., Mizuno H. et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001; 7: 211-26.
  9. Mizuno H. Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. J. Nippon. Med. Sch. 2009; 76(2): 56-66.
  10. Aust L., Devlin В., Foster S.J. et al. Yield of human adipose- derived adult stem cells from liposuction aspirates. Cytotherapy 2004; 6: 7-14.
  11. Jurgens W.J., Oedayrajsingh-Varma M.J., Helder M.N. et al. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell Tissue Res. 2008; 332(3): 415-26.
  12. Le Blanc K., Rasmusson I., Sundberg B. et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439-41.
  13. Khakoo A.Y., Pati S., Anderson S. A. et al. Human mesenchymal stem cells exert potent antitumorigenic effect in a model of Kaposi's sarcoma. J. Exp. Med. 2006; 203: 1253-47.
  14. Nakamizo A., Marini F., Amano T. et al. Human bone marrow- derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 2005; 65: 3307-18.
  15. Nakamura K., Ito Y., Kawano Y. et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther. 2004; 11: 1155-64.
  16. Studeny M., Marini F.C., Champlin R. E. et al. Bone marrow- derived mesenchymal stem cells as vehicles for interferon-h delivery into tumors. Cancer Res. 2002; 62: 3603-8.
  17. Studeny M., Marini F.C., Dembinski J.L. et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J. Natl. Cancer. Inst. 2004; 96: 1593-603.
  18. Sadan 0., Melamed E., Offen D. Bone-marrow-derived mesenchymal stem cell therapy for neurodegenerative diseases. Expert. Opin. Biol. Ther. 2009; 9(12): 1487-97.
  19. Pittenger M.F., MackayA.M., Beck S.C. et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-7.
  20. Majumdar M.K., Thiede M.A., Mosca J.D. et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J. Cell. Physiol. 1998; 176: 57-66.
  21. Kim Y., Kim H., Cho H. et al. Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol. Biochem. 2007; 20(6): 867-76.
  22. Al-Khaldi A., Al-Sabti H., Galipeau J. et al. Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. Ann. Thorac. Surg. 2003; 75: 204-9.
  23. Lee J.В., Bae Y.C., Sung S.M. et al. Human adipose tissue- derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol. Biochem. 2006; 17(5-6): 279-90.
  24. Kaigler D., Krebsbach P.H., Polverini P.J. et al. Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells. Tissue Eng. 2003; 9(1): 95-103.
  25. Spizizen J., Reilly B.E., Evans A.H. Microbial transformation and transfection. Annu. Rev. Microbiol. 1966; 20: 371-400.
  26. Tichý P., Rytír V., Kohoutová M. Genetic transformation and transfection of Bacillus subtilis spheroplasts. Folia Microbiol. (Praha). 1968; 13(6): 510-4.
  27. Cudkowicz G., Upton A.C., Smith L.H. et al. An Approach to the Characterization of Stem Cells in Mouse Bone Marrow. Ann. NY Acad. Sci. 1964; 114: 571-85.
  28. Allay J.A., Dennis J.E., Haynesworth S.E. et al. LacZ and interleukin-3 expression in vivo after retroviral transduction of marrow- derived human osteogenic mesenchymal progenitors. Hum. Gene Ther. 1997; 8(12): 1417-27.
  29. Riew K.D., Wright N.M., Cheng S. et al. Induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene in a rabbit spinal fusion model. Calcif. Tissue Int. 1998; 63(4): 357-60.
  30. Dong S.W., Ying D.J., Duan X.J. et al. Bone regeneration using an aсellular extracellular matrix and bone marrow mesenchymal stem cells expressing Cbfa1. Biosci. Biotechnol. Biochem. 2009; 73(10): 2226-33.
  31. Kang Y., Liao W.M., Yuan Z.H. et al. In vitro and in vivo induction of bone formation based on adeno-associated virus-mediated BMP-7 gene therapy using human adipose-derived mesenchymal stem cells. Acta. Pharmacol. Sin. 2007; 28(6): 839-49.
  32. Sheyn D., Pelled G., Zilberman Y. et al. Nonvirally engineered porcine adipose tissue-derived stem cells: use in posterior spinal fusion. Stem Cells 2008; 26(4): 1056-64.
  33. Tu Q., Valverde P., Li S. et al. Osterix overexpression in mesenchymal stem cells stimulates healing of critical-sized defects in murine calvarial bone. Tissue Eng. 2007; 13(10): 2431-40.
  34. Gondo S., Okabe Т., Tanaka T. et al. Adipose tissue-derived and bone marrow-derived mesenchymal cells develop into different lineage of steroidogenic cells by forced expression of steroidogenic factor 1. Endocrinology 2008; 149(9): 4717-25.
  35. Xu X., Tang L. Q., Ma S.C. et al. EphrinB2 gene transfection promotes the differentiation of bone marrow mesenchymal stem cells into vascular endothelial cells. Nan Fang Yi Ke Da Xue Xue Bao. 2008; 28(5): 790-4.
  36. Madonna R., Willerson J.T., Geng Y.J. Myocardin a enhances telomerase activities in adipose tissue mesenchymal cells and embryonic stem cells undergoing cardiovascular myogenic differentiation. Stem Cells 2008; 26(1): 202-11.
  37. Guo C.A., Liu X.G., Huo J.Z. et al. Novel gene-modified-tissue engineering of cartilage using stable transforming growth factor-beta1 - transfected mesenchymal stem cells grown on chitosan scaffolds. J. Biosci. Bioeng. 2007; 103(6): 547-56.
  38. Xu Y., Mirmalek-Sani S.H., Lin F. et al. Adipocyte differentiation induced using nonspecific siRNA controls in cultured human mesenchymal stem cells. RNA. 2007; 13(8): 1179-83.
  39. Zeng В., Chen H., Zhu C. et al. Effects of combined mesenchymal stem cells and heme oxygenase-1 therapy on cardiac performance. Eur. J. Cardiothorac. Surg. 2008; 34(4): 850-6.
  40. Gao F., He Т., Wang H. et al. A promising strategy for the treatment of ischemic heart disease: Mesenchymal stem cell-mediated vascular endothelial growth factor gene transfer in rats. Can. J. Cardiol. 2007; 23(11): 891-8.
  41. Mei S.H., McCarter S.D., Deng Y. et al. Prevention of LPS- induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med. 2007; 4(9): e269.
  42. Kim J.H., Park S.N., Suh H. Generation of insulin-producing human mesenchymal stem cells using recombinant adeno-associated virus. Yonsei. Med. J. 2007; 48(1): 109-19.
  43. Li W., Ma N., Ong L.L. et al. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 2007; 25(8): 2118-27.
  44. Parolin C., Sodroski J. A defective HIV-1 vector for gene transfer to human lymphocytes. J. Mol. Med. 1995; 73(6): 279-88.
  45. Naldini L., Вlomer U., Gallay P. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272(5259): 263-7.
  46. Marshall H.M., Ronen K., Berry C. et al. Role of PSIP1/LEDGF/ p75 in Lentiviral Infectivity and Integration Targeting. PLoS ONE 2007; 2: e1340.
  47. Modlich U., Baum C. Preventing and exploiting the oncogenic potential of integrating gene vectors. J. Clin. Invest. 2009; 119(4): 755-8.
  48. Imren S., Fabry M.E., Westerman K.A. et al. High-level beta- globin expression and preferred intragenic integration after lentiviral transduction of human cord blood stem cells. J. Clin. Invest. 2004; 114(7): 953-62.
  49. Di lanni M., Casciari C., Ciurnelli R. et al. Retroviral transfer of herpes simplex virus-thymidine kinase and beta-galactosidase genes into U937 cells with bicistronic vector. Leuk Res. 1997; 21: 951-9.
  50. Van Damme A., Thorrez L., Ma L. et al. Efficient lentiviral transduction and improved engraftment of human bone marrow mesenchymal cells. Stem Cells 2006; 24(4): 896-907.
  51. Bestor Т.Н. Gene silencing as a threat to the success of gene therapy. J. Clin. Invest. 2000; 105: 409-11.
  52. Chan J., O'Donoghue K., de la Fuente J. et al. Human fetal mesenchymal stem cells as vehicles for gene delivery. Stem Cells 2005; 23: 93-102.
  53. Peterson В., Iglesias R., Zhang J. et al. Genetically modified human derived bone marrow cells for posterolateral lumbar spine fusion in athymic rats: beyond conventional autologous bone grafting. Spine 2005; 30: 283-90.
  54. Gottfried O.N., Dailey A.T. Mesenchymal stem cell and gene therapies for spinal fusion. Neurosurgery 2008; 63: 380-92.
  55. Somia N., Verma I.M. Gene therapy: trials and tribulations. Nature Reviews Genetics 2000; 1(2): 91-9.
  56. Christiano R. Viral and non-viral vectors for cancer gene therapy. Anticancer Res. 1998; 18: 3142-246.
  57. Bangari D.S., Mittal S.K. Current strategies and future directions for eluding adenoviral vector immunity. Curr. Gene Ther. 2006; 6: 215-26.
  58. Bushman F., Lewinski M., Ciuffi A. et al. Genome-wide analysis of retroviral DNA integration. Nat. Rev. Microbiol. 2005; 3: 848-58.
  59. Flotte T.R. Gene therapy: The first two decades and the current state-of-the-art. J. Cell Physiol. 2007; 213: 301-5.
  60. Li Z., Dullmann J., Schiedlmeier B. et al. Murine leukemia induced by retroviral gene marking. Science 2002; 296: 497.
  61. Marshall E. Gene therapy death prompts review of adenovirus vector. Science 1999; 286: 2244-5.
  62. Yang J., Tang Т., Li F. et al. Experimental Study of the Effects of Marrow Mesenchymal Stem Cells Transfected with Hypoxia-Inducible Factor- 1- Gene. Journal of Biomedicine and Biotechnology 2009; 2009: 1-10.
  63. Hoelters J., Ciccarella M., Drechsel M. et al. Nonviral genetic modification mediates effective transgene expression and functional RNA interference in human mesenchymal stem cells. J. Gene Med. 2005; 7: 718-28.
  64. Wu M.H., Liebowitz D.N., Smith S.L. et al. Efficient expression of foreign genes in human CD34+ hematopoietic precursor cells using electroporation. Gene Ther. 2001; 8(5): 384-90.
  65. Aluigi M., Fogli M., Curti A. et al. Nucleofection is an efficient nonviral transfection technique for human bone marrow-derived mesenchymal stem cells. Stem Cells 2006; 24: 454-61.
  66. Uchida E., Mizuguchi H., Ishii-Watabe A. et al. Comparison of the efficiency and safety of non-viral vector-mediated gene transfer into a wide range of human cells. Biol. Pharm. Bull. 2002; 25: 891-7.
  67. Helledie Т., Nurcombe V., Cool S.M. A simple and reliable electroporation method for human bone marrow mesenchymal stem cells. Stem Cells Dev. 2008; 17(4): 837-48.
  68. Haleem-Smith H., Derfoul A., Okafor C. et al. Optimization of high-efficiency transfection of adult human mesenchymal stem cells in vitro. Mol. Biotechnol. 2005; 30: 9-20.
  69. Hamm A., Krott N., Breibach I. et al. Efficient transfection method for primary cells. Tissue Eng. 2002; 8: 235-45.
  70. Lakshmipathy U., PelachoB., Sudo K. et al. Efficient transfection of embryonic and adult stem cells. Stem Cells 2004; 22: 531-43.
  71. Horwitz E.M., Prockop D.J., Fitzpatrick L.A. et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal stem cells in children with osteogenesis imperfect. Nat. Med. 1999; 5: 309-13.
  72. Lee K., Majumdar M.K., Buyaner D. et al. Human mesenchymal stem cells maintain trangene expression during expansion and differentiation. Mol. Ther. 2001; 3: 857-66.
  73. Wiehe J.M., Ponsaerts P., Rojewski M.T. et al. mRNA-mediated gene delivery into human progenitor cells promotes highly efficient protein expression. J. Cell Mol. Med. 2007; 11(3): 521-30.
  74. Hadlaczky G., Praznovszky Т., Cserp6n I. et al. Centromere formation in mouse cells cotransformed with human DNA and a dominant marker gene. PNAS U S A 1991; 88(18): 8106-10.
  75. Praznovszky Т., Кегеэц J., Tubak V. et al. De novo chromosome formation in rodent cells. PNAS USA 1991; 88(24): 11042-6.
  76. Vanderbyl S., MacDonald G.N., Sidhu S. et al. Transfer and stable transgene expression of a mammalian artificial chromosome into bone marrow-derived human mesenchymal stem cells. Stem Cells 2004; 22(3): 324-33.
  77. Ren X., Katoh M., Hoshiya H. et al. A novel human artificial chromosome vector provides effective cell lineage-specific transgene expression in human mesenchymal stem cells. Stem Cells 2005; 23(10): 1608-16.
  78. Gwak S.J., Kim B.S. Poly [lactic-co-glycolic acid] nanosphere as a vehicle for gene delivery to human cord blood-derived mesenchymal stem cells: comparison with polyethylenimine. Biotechnol. Lett. 2008; 30(7): 1177-82.
  79. Valero A., Post J.N., van Nieuwkasteele J.W. et al. Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device. Lab. Chip. 2008; 8(1): 62-7.
  80. Bosch P., Pratt S.L., Stice S.L. Isolation, characterization, gene modification, and nuclear reprogramming of porcine mesenchymal stem cells, biology of reproduction 2006; 1(74): 46-57.
  81. Hung S.-C., Lu C.-Y., Shyue S.-K. et al. Lineage differentiation- associated loss of adenoviral susceptibility and coxsackie-adenovirus receptor expression in human mesenchymal stem cells. Stem Cells 2004; 22: 1321-9.
  82. Balyasnikova I.V., Franco-Gou R., Mathis J.M. et al. Genetic modification of mesenchymal stem cells to express a single-chain antibody against EGFRvlll on the cell surface. J. Tissue Eng. Regen. Med. 2009. Epub ahead of print.
  83. Yang J.F., Zhou W.W., Tang T. et al. Transfection of human VEGF165 gene into bone marrow mesenchymal stem cells in rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2006; 31(3): 313-8.
  84. Mok P.L., Cheong S.K., Leong C.F. et al. In vitro expression of erythropoietin by transfected human mesenchymal stromal cells. Cytotherapy 2008; 10(2): 116-24.
  85. Asian H., Zilberman Y., Arbeli V. et al. Nucleofection-based ex vivo nonviral gene delivery to human stem cells as a platform for tissue regeneration. Tissue Eng. 2006; 12(4): 877-89.
  86. Meyerrose Т.Е., De Ugarte D.A., Hofling A.A. et al. In vivo distribution of human adipose-derived mesenchymal stem cells in novel xenotransplantation models. Stem Cells 2007; 25(1): 220-7.
  87. Zhang X.Y., La Russa V.F., Bao L. et al. Lentiviral vectors for sustained transgene expression in human bone marrow-derived stromal cells. Mol. Ther. 2002; 5: 555-65.
  88. Stender S., Murphy M., O'Brien T. et al. Adeno-associated viral vector transduction of human mesenchymal stem cells. Eur. Cell Mater. 2007; 13: 93-9.
  89. Palmer G.D., Steinert A., Pascher A. et al. Gene-induced chondrogenesis of primary mesenchymal stem cells in vitro. Mol. Ther. 2005; 12(2): 219-28.
  90. Roelants V., Labar D., de Meester C. et al. Comparison between adenoviral and retroviral vectors for the transduction of the thymidine kinase PET reporter gene in rat mesenchymal stem cells. Journal of Nuclear Medicine 2008; 49(11): 1836-44.
  91. Ma L., Wang G., Li L. et al. Expression of lipofect AMINE mediated human GM-CSF eukaryotic expressing vector in HFCL cells. Zhonghua Xue Ye Xue Za Zhi. 2000; 21(12): 624-7.
  92. Baksh D., Yao R., Tuan R.S. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 2007; 25(6): 1384-92.
  93. Ronsyn M.W., Daans J., Spaepen G. etal. Plasmid-based genetic modification of human bone marrow-derived stromal cells: analysis of cell survival and transgene expression after transplantation in rat spinal cord. BMC Biotechnology 2007; 7: 90.
  94. Kucerova L., Altanerova V., Matuskova M. et al. Adipose Tissue- Derived Human Mesenchymal Stem Cells Mediated Prodrug Cancer Gene Therapy. Cancer Research 2007; 67: 6304-13.
  95. Knafln-Shanzer S., van de Watering M.J.M., van der Velde I. et al. Endowing Human Adenovirus Serotype 5 Vectors with Fiber Domains of Species В Greatly Enhances Gene Transfer into Human Mesenchymal Stem Cells. Stem Cells 2005; 10 (23): 1598-607.
  96. Partridge K.A., Oreffo R.O. Gene delivery in bone tissue engineering: progress and prospects using viral and nonviral strategies. Tissue Eng. 2004; 10: 295-307.
  97. Patkin E.L. Epigenetic mechanisms for primary differentiation in mammalian embryos. Int. Rev. Cytol. 2002; 216: 81-129.
  98. Paulsen M., Ferguson-Smith A.C. DNA methylation in genomic imprinting, development, and disease. J. Pathol. 2001; 195: 97-110.
  99. Tate P., Skarnes W., Bird A. The methyl-CpG binding protein MeCP2 is essential for embryonic development in the mouse. Nat. Genet. 1996; 12: 205-8.
  100. Nan X., Campoy F.J., Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 1997; 88: 471-81.
  101. Fazzari M.J., Greally J.M. Epigenomics: beyond CpG islands. Nat. Rev. Genet. 2004; 5: 446-55.
  102. Grassi G., Maccaroni P., Meyer R. et al. Inhibitors of DNA methylation and histone deacetylation activate cytomegalovirus promoter-controlled reporter gene expression in human glioblastoma cell line U87. Carcinogenesis 2003; 10(24): 1625-35.
  103. Krishnan M., Park J.M., Cao F. et al. Effects of epigenetic modulation on reporter gene expression: implications for stem cell imaging. The FASEB Journal 2006; 20(1): 106-8.
  104. Bahadori M. New Advances in RNAs. Arch. Iranian Med. 2008; 11 (4): 435-43.
  105. Mclnerney J.M., Nawrocki J.R., Lowrey C.H. Long-term silencing of retroviral vectors is resistant to reversal by trichostatin A and 5-azacytidine. Gene Ther. 2000; 7: 653-63.
  106. Lori ncz M.C., Schubeler D., Goeke S.C. et al. Dynamic analysis of proviral induction and de novo methylation: implications for a histone deacetylase-independent, methylation density-dependent mechanism of transcriptional repression. Mol. Cell Biol. 2000; 20: 842-50.
  107. Rosenqvist N., Hard Af Segerstad C., Samuelsson C. et al. Activation of silenced transgene expression in neural precursor cell lines by inhibitors of histone deacetylation. J. Gene Med. 2002; 4: 248-57.
  108. Di lanni M., Terenzi A., Perruccio K. et al. 5-Azacytidine prevents transgene methylation in vivo. Gene Therapy 1999; 4(6): 703-7.
  109. Di lanni M., Terenzi A., Di Florio S. et al. In vivo demethylation of a MoMuLV retroviral vector expressing the herpes simplex thymidine kinase suicide gene by 5-azacytidine. Stem Cells 2000; 18: 415-21.
  110. Kameda Т., Smuga-Otto K., Thomson J.A. A severe de novo methylation of episomal vectors by human ES cells. Biochemical and Biophysical Research Communications 2006; 349: 1269-77.
  111. Escher G., Hoang A., Georges S. et al. Demethylation using the epigenetic modifier, 5-azacytidine, increases the efficiency of transient transfection of macrophages. J. Lipid Res. 2005; 46: 356-65.
  112. Gaetano C., Catalano A, Palumbo R. et al. Transcriptionally active drugs improve adenovirus vector performance in vitro and in vivo. Gene Therapy 2000; 7: 1624-30.
  113. Ishiguro K, Sartorelli A.C. Activation of transiently transfected reporter genes in 3T3 Swiss cells by the inducers of differentiation/apoptosis-dimethylsu If oxide, h exam ethylene bisacetamide and trichostatin A. Eur. J. Biochem. 2004; 271(12): 2379-90.
  114. Bartoli A., Fettucciari K., Fetriconi I. et al. Effect of trichostatin A and 5-azacytidine on transgene reactivation in U937 transduced cells. Pharmacological Research 2003; 48: 111-8.
  115. Vidasa. Prescribing information, http://www.accessdata.fda.gov/ drugsatfda_docs/label/2008/050794s0111bl.pdf.
  116. Jones P.A., Taylor S.M. Cellular differentiation, cytidine analogs and DNA methylation. Cell 1980; 20: 85-93.
  117. He J., Yang Q., Chang L.J. Dynamic DNA methylation and histone modifications contribute to lentiviral transgene silencing in murine embryonic carcinoma cells. J. Virol. 2005; 79(21): 13497-508.
  118. Hoeben R.C., Migchielsen A.A.J., Van Der Jagt R.C.M. et al. Inactivation Of The Moloney Murine Leukemia Virus Long Terminal Repeat In Murine Fibroblast Cell Lines Is Associated With Methylation And Dependent On Its Chromosomal Position. Journal of Virology 1991; 2(65): 904-12.
  119. Finnin M.S., Donigian J.R., Cohen A. et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 1999; 401: 188-93.
  120. Cheng J.C., Matsen C.B., Gonzales F.A. et al. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J. Natl. Cancer Inst. 2003; 95: 399-409.

Copyright (c) 2010 Eco-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 85657 от 21.07.2023 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies