Stem cell therapy of heart failure: clinical trials, problems and perspectives
- Authors: Kochegura TN1, Efimenko AY.1, Akopyan Z.A1, Parfenova EE1, Kochegura TN2, Efimenko AY2, Akopyan Z.A2, V E.M2
-
Affiliations:
- Lomonosov Moscow State University, Moscow
- Issue: Vol 5, No 2 (2010)
- Pages: 11-18
- Section: Articles
- URL: https://genescells.ru/2313-1829/article/view/121462
- DOI: https://doi.org/10.23868/gc121462
Cite item
Full Text
Abstract
About the authors
T N Kochegura
A Yu Efimenko
Zh A Akopyan
E E Parfenova
T N Kochegura
Lomonosov Moscow State University, MoscowLomonosov Moscow State University, Moscow
A Y Efimenko
Lomonosov Moscow State University, MoscowLomonosov Moscow State University, Moscow
Zh A Akopyan
Lomonosov Moscow State University, MoscowLomonosov Moscow State University, Moscow
EV M V
Lomonosov Moscow State University, MoscowLomonosov Moscow State University, Moscow
References
- Беленков Ю.Н., Привалова Е.В., Чекнева И.С. Клеточная терапия в лечении хронической сердечной недостаточности: виды применяемых стволовых клеток, результаты последних клинических исследований. Кардиология и сердечно-сосудистая хирургия 2008; 5: 4-18.
- Orlic D. Stem cell repair in ischemic heart disease: an experiment models. Int. J. Hematol. 2002; 76: 144-5.
- Orlic D., Kajstura J., Chimentis A. et al. Bone marrow cells regenerate infracted myocardium. Nature 2004; 410: 701-5.
- Anversa P. et al. Cardiac regeneration. J. Am. Coll. Cardiol. 2006; 47(9): 1769-76.
- Kinnaird Т., Stabile E., Burnett M.S. et al. Marrow-derived stromal cells express genes encoding a broad spectrum arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res. 2004; 94: 25-31.
- Трактуев Д.О., Парфенова E.B., Ткачук В.А. и др. Стромальные клетки жировой ткани - пластический тип клеток, обладающих высоким терапевтическим потенциалом. Цитология 2006; 48: 83-94.
- Fukuda К. Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering. Artif. Organs. 2001; 25: 187-97.
- Lyngbaek S., Scheider M., Hansen J. L. et al. Cardiac regeneration byresident stem and progenitor cells in the adult heart. Basic Res. Cardiol. 2007; 102(2): 101-14.
- Terada N., Hamazaki Т., Oka M. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002; 416: 542-5.
- Ying Q.L., Nichols J., Evans E.P. et al. Changing potency by spontaneous fusion. Nature 2002; 416: 545-8.
- Vassilopoulos G., Wang P.R., Russell D.W. Transplanted bone marrow regenerates liver by cell fusion. Nature 2003; 422: 901-4.
- Alvarez-Dolado M., Pardal R., Garcia-Verdugo J. M. et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003; 425: 968-73.
- Ogle B.M., Cascalho M., Piatt J.L. Biological implications of cell fusion. Mol. Cell. Biol. 2005; 6(7): 567-75.
- Menasche P. Cell-based therapy for heart disease: a clinically oriented perspective. Molecular therapy 2009; 17(7): 758-66.
- Makino S., Fukuda K., Miyoshi S. et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 1999; 103: 697-705.
- Fukuda K., Fujita J. Mesenchymal, but not hematopoietic, stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction in mice. Kidney International 2005; 68: 1940-3
- Kajstura J., Rota M., Whang B. et al. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ. Res. 2005; 96: 127-37.
- Kawada H., Fujita J., Kinjo K. et al. Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 2004; 104(12): 3581-7.
- Zuk P.A., Zhu M., Ashjian P. et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 2002; 13: 4279-95.
- Gimble J.M., Katz. A.J., Bunnell B.A. Adipose-derived stem cells for regenerative medicine. Circ. Res. 2007; 100: 1249-60.
- van Dijk, Niessen H.W.M., Visser F.C., et al. Differentiation of adipose-derived stem cells toward cardiomyocytes: the role of the extracellular matrix molecules fibronectine and laminin. Proceedings of Fifth Annual Meetings of International Federation of Adipose Therapeutic and Science, Indianapolis 2007: 27-8.
- Planat-Benard V., Menard C, Andre M. et al. Spontaneous cardiomyocyte differentiation from adipose tissue stromal cells. Circ. Res. 2004; 94: 223-9.
- Perin E.C., Lopez J. Methods of stem cell delivery in cardiac diseases. Nat. Clin. Pract. Cardiovasc. Med. 2006; 3: 110-3.
- Charwat S., Gyongyo M., Lang I. et al. Role of adult bone marrow stem cells in the repair of ischemic myocardium. Experimental Hematology 2008; 36: 672-80.
- Strauer B. E., Brehm M., Schannwell С. M. The therapeutic potential of stem cells in heart disease. Cell Prolif. 2008; 41: 126-45.
- Lipinski M. J., Biondi-Zoccai G.G., Abbate A. et al. Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction. J. Am. Coll. Cardiol. 2007; 50(18): 1761-7.
- Takano H., Hasegawa H., Kuwabara Y. et al. Feasibility and safety of granulocyte colonystimulating factor treatment in patients with acute myocardial infarction. Int. J. Cardiol. 2007; 122: 41-7.
- Fan L., Chen L., Chen X., et al. A meta-analysis of stem cell mobilization by granulocyte colony-stimulating factor in the treatment of acute myocardial infarction. Cardiovasc. Drugs Ther. 2008; 22: 45-54.
- Menasche P. Current status and future prospects for cell transplantation to prevent congestive heart failure. Semin Thorac. Cardiovasc. Surg. 2008; 20: 131-7.
- Yao К., Huang R., Qian J. et al. Administration of intracoronary bone marrow mononuclear cells on chronic myocardial infarction improves diastolic function. Heart 2D08; 94: 1147-53.
- Kocher A.A., Shuster M.D., Szaboles M.J. et al. Neovasculrization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, redused remodeling and improves cardiac function. Nat. Med. 2001; 7: 430-6.
- Strauer B.E., Brehm M., Zeus T. et al. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J. Am. Coll. Cardiol. 2005; 46: 1651-8.
- Assmus В., Fischer-Rasokat U., Honold J. et al. TOPCARE-CHD Registry. Transcoronary transplantation of functionally competent BMCs is associated with a decrease in natriuretic peptide serum levels and improved survival of patients with chronic postinfarction heart failure: results of the TOPCARE-CHD Registry. Circ. Res. 2007; 100: 1234-41.
- Allman K.C., Shaw L.J., Hachamovitch R., et al. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J. Am. Coll. Cardiol. 2002; 39; 7: 1151-58.
- Рахмат-Заде T.M., Скридлевская E.A., Акчурин P.С. Костномозговые стволовые клетки в лечении ишемической болезни сердца. Кардиология 2007; 1: 47-51.
- Perin Е.С., Dohmann H.F.R., Borojevic R. et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003; 107: 2294-302.
- Perin E.C., Dohmann H.F., Borojevic R. et al. Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 2004; 110: 213-8.
- Galinanes M., Loubani M., Davies J., et al. Autotransplantation of unmanipulated bone marrow into scarred myocardium is safe and enhances cardiac function in humans. Cell Transplant 2004; 13: 7-13.
- Fuchs S., Satler L.F., Kornowski R. et al. Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study. J. Am. Coll. Cardiol. 2003; 41: 1721-4.
- Tse H.F., Kwong Y.L., Chan J.K. et al. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 2003; 361: 47-9.
- Silva G.V., Perin E.C., Dohmann H.F.R. et al. Catheter-based transendocardial delivery of autologous bone-marrow-derived mononuclear cells in patients listed for heart transplantation. J. Tex. Heart Inst. 2004; 31: 214-9.
- Assmus В., Honold J., Schachinger V. et al. Transcoronary transplantation of progenitor cells after myocardial infarction. J. N. Engl. Med. 2006; 355: 1222-32.
- Beeres S.L., Bax J.J., Kaandorp Т.Д. et al. Usefulness of intramyocardial injection of autologous bone marrow-derived mononuclear cells in patients with severe angina pectoris and stress-induced myocardial ischemia. J. Am. Coll. Cardiol. 2006; 97: 1326-31.
- Briguori C, Reimers В., Sarais С et al. Direct intramyocardial percutaneous delivery of autologous bone marrow in patients with refractory myocardial angina. J. Am. Heart. 2006; 151: 674-80.
- Kuethe F., Richartz B.M., Kasper С et al. Autologous intracoronary mononuclear bone marrow cell transplantation in chronic ischemic cardiomyopathy in humans. Int. J. Cardiol. 2005; 100: 485-91.
- Бокерия Л.А., Бузиашвили Ю. И., Мацкеплишвили С. Т., Камардинов Д. X. Первый опыт применения стволовых клеток костного мозга для регенерационной терапии ишемической болезни сердца. Кардиология и сердечно-сосудистая хирургия 2004; 6: 34-7.
- Ахмедов Ш.Д., Бабокин В.Е., Рябов В.В. и др. Клинический опыт применения аутологичных мононуклеарных клеток костного мозга в лечении пациентов с ишемической болезнью сердца и дилатационной кардиомиопатией. Кардиология 2006; 7:10-14.
- Hendrikx М., Hensen К., Clijsters С. et al. Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial. Circulation 2006; 114: 101-7.
- Stamm C, Nasseri В., Drews Т., et al. Cardiac cell therapy: A realistic concept for elderly patients. Experimental Gerontology 2008; 43: 679-90.
- Losordo D.W., Schatz R.A., White C.J. et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase l/lla double-blind, randomized controlled trial. Circulation 2007; 115: 3165-72.
- Stamm C, Kleine H., Choi Y. et al. Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: Safety and efficacy studies. J. Thorac. Cardiovasc. Surg. 2007; 133: 717-25.
- Fuchs S., Kornowski R., Weisz G. et al. Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease. J. Am. Coll. Cardiol. 2006; 97(6): 823-9.
- Patel A.N., Geffner L, Vina R.F. et al. Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study. J. Thorac. Cardiovasc. Surg. 2005; 130(6): 1631-8.
- Ozbaran M., Omay S.B., Nalbantgil S. et al. Autologous peripheral stem cell transplantation in patients with congestive heart failure due to ischemic heart disease. Eur. J. Cardiothorac. Surg. 2004; 25: 342-50.
- Pittenger M.F., Martin B.J. Mesenchymal stem cells and their potential as cardiac theurapetics. Circ. Res. 2004; 95: 9-20.
- Цыб А.Ф., Конопляников А.Г., Каплан M.A. и др. Использование системной трансплантации кардиомиобластов, полученных из мезенхимальных стволовых клеток аутологичного костного мозга, при комплексной терапии больных с хронической сердечной недостаточностью. Клеточная трансплантология и тканевая инженерия 2008; 1: 78-84.
- Шумаков В.И., Казаков Э.Н., Онищенко Н.А. и др. Первый опыт клинического применения аутологичных мезенхимальных стволовых клеток костного мозга для восстановления сократительной функции миокарда. Рос. кардиол. журн. 2003; 5(43): 42-50.
- Breitbach М., Bostani Т., Roell W. et al. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 2007; 110: 1362-9.
- Pouzet В., Volquin J.Т., Hagege A.A. et al. Factors affecting functional outcome after autologous skeletal myoblast transplantation. Ann. Thorac. Surg. 2001; 71: 844-51.
- Tambara K., Sakakibara Y., Sakaguchi G. et al. Transplanted skeletal myoblasts can fully replace the infarcted myocardium when they survive in the host in large numbers. Circulation 2003; 108: 259-63.
- Reinecke H., Poppa V., Murry C.E. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J. Mol. Cell Cardiol. 2002; 34: 241-9.
- Menasche P., Hagege A.A., Scorsin M. et al. Myoblast transplantation for heart failure. Lancet 2001; 357: 279-80.
- Siminiak Т., Kalawski R., Fiszer D. et al. Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. J. Am. Heart. 2004; 148: 531-7.
- Dib N., Michler R.E., Pagani F.D. et al. Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation 2005; 112: 1748-55.
- Menasche P., Alfieri 0., Janssens S. et al. The myoblast autologous grafting in ischemic cardiomyopathy [MAGIC) trial. First randomized placebo-controlled study of myoblast transplantation. Circulation 2008; 117: 1189-200.
- Fedak P.W.M. Paracrine effects of cell transplantation: modifying ventricular remodeling in the failing heart. Semin. Thorac. Cardiovasc. Surg. 2008; 20: 87-93.
- Ince H., Petzsch M., RehdersT.C. etal.Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction. J. Endovasc. Ther. 2004; 11: 695-704.
- Biagini E., Valgimigli M., Smits P.С et al. Stress and tissue Doppler echocardiographic evidence of effectiveness of myoblast transplantation in patients with ischemic heart failure. Eur. J. Heart Fail. 2006; 8: 641-8.
- Dib N., Dinsmore J., Mozak R. et al. Safety and feasibility of percutaneous autologous skeletal myoblast transplantation for ischemic cardiomyopathy: Six-month interim analysis. Circulation 2006; 114: 88.
- Dimmeler S., Leri A. Aging and disease as modifiers of efficacy of cell therapy. Circ. Res. 2008; 102: 1319-30.
- Rossi D.J., Jamieson C.H., Weissman I.L. Stems cells and the pathways to aging and cancer. Cell 2008; 132: 681-96.
- Hofmann M., Wollert K.C., Meyer G.P. et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 2005; 111: 2198-202.
- Freyman Т., Polin G., Osman H., et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur. Heart J. 2006; 27: 1114-22.
- Hou D., Youssef E.A., Brinton T.J. et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 2005; 112: 1150-6.
- Anversa P., Kajstura J., Leri A. et al. Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 2006; 113: 1451-63.
- Messina E., De Angelis L., Frati G. et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res. 2004; 95(9): 911-21.
- Leri A., Kajstura J., Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiol. Rev. 2005; 85: 1373-416.
- Smith R.R., Barile L, Cho H.C. et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 2007; 115: 896-908.
- Takahashi K., Tanabe K., Ohnuki M. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131: 861-872.
- Yu J., Vodyanik M.A., Smuga-Otto K. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917-20.
- Zhou H., Wu S., Joo J.Y. et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem 2009; 4: 381-4.
