Kletochnaya terapiya pri travme golovnogo mozga


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Травма головного мозга СТГМ) до настоящего времени остается серьезной проблемой медицины. Фармакотерапия может замедлить нейродегенеративные процессы, сопутствующие повреждению, и частично снизить выраженность вызванных им симптомов, однако не способна привести к полному восстановлению когнитивных и моторных функций у пациента при тяжелой травме, а также обеспечить регенерацию нервной ткани в поврежденной области. Альтернативой лекарственным препаратам является клеточная терапия с применением различных видов стволовых клеток, способных продуцировать необходимые факторы роста и нейротрофины, дифференцироваться в нейроны и клетки глии, а также стимулировать пролиферацию и дифференцировку собственных нейропрогениторных клеток реципиента. Обзор посвящен анализу данных о существующих на сегодняшний день подходах к клеточной терапии ТГМ, при этом акцент сделан на трансплантации мультипотентных мезенхимальных стромальных клеток СММСЮ костного мозга.

About the authors

A S Grigoryan

P V Kruglyakov

References

  1. Lu D., Mahmood A., Chopp М. Biologic transplantation and neurotrophin-induced neuroplasticity after traumatic brain injury. J. Head Trauma. Rehabil. 20D3; 18: 357-76.
  2. Dobkin B.H. Neuroplasticity: key to recovery after central nervous system injury. West J. Med. 1ЭЭЗ; 159: 56-Б0.
  3. Reier P.J., Stokes B.T., Thompson F.J., Anderson D.K. Fetal cell grafts into resection and contusion/compression injuries of the rat and cat spinal cord. Exp. Neurol. 1ЭЭ2; 115: 177-88.
  4. Kermer P., Klucker N., Bflhr M. Neuronal death after brain injury. Models, mechanisms, and therapeutic strategies in vivo. Cell Tissue Res. 19ЭЭ; 298: 383-95.
  5. Duan X., Kang E., Liu C.Y. et al. Development of neural stem cell in the adult brain. Curr. Opin. Neurobiol. 2008; 18(1): 108-15.
  6. Kempermann G., Praag H.V., Gage F.H. Activity-dependent regulation of neuronal plasticity and self repair. Progr. Brain Res. 2000; 127: 35-48.
  7. Hebb D.O. The Organization of behavior: A Neouropsychologica Theory. 2nd ed. Wiley (NY): Lawrence Erlbaum Associates; 2002.
  8. Stein D.G., Hoffman S.W. Concepts of CNS Plasticity in the Context of Brain Damage and Repair. J. Head Trauma. Rehabil. 2003; 18: 317-41.
  9. Kochhar A., Zivin J.A., Lyden P.D., Mazzarella V. Glutamate antagonist therapy reduces neurologic deficits produced by focal central nervous system ischemia. Arch. Neurol. 1988; 45: 148-53.
  10. Wahlgren N.G., MacMahon D., DeKeyser J. et al. Intravenous Nimodipine West European Stroke Trial (INWEST) of nimodipine in the treatment of acute stroke. Cerebrovasc. Dis. 1994; 4: 204-10.
  11. Lubitz D.K. von, Lin R.C., Melman N. et al. Chronic administration of selective adenosine A1 receptor agonist or antagonist in cerebral ischemia. Eur. J. Pharmacol. 1994; 25Б: 161-7.
  12. Haley E.C., Kassell N.F., Alves W.M. et al. Phase II trial of tirilizad in aneurismal subarachnoid hemorrhage. A report of the Cooperative Aneurysm Study. J. Neurosurg. 1995; 82: 786-90.
  13. Alter M. Ganglioside GM1 in acute ischemic stroke. Stroke 1995; 25: 1141-8.
  14. Lenzi G.L., Grigoletto F., Gent M. et al. Early treatment of stroke with monosialoganglioside GM-1. Efficacy and safety results of the Early Stroke Trial. Stroke 1994; 25: 1552-8.
  15. Postmantur R., Kampfl A., Siman R. et al. A calpain inhibitor attenuates cortical cytoskeletal protein loss after experimental traumatic brain injury in the rat. Neuroscience 1997; 77: 875-8.
  16. Bogousslavsky J. Neuroprotection as initial therapy in acute stroke. Cerebrovasc. Dis. 1998; 8(1): 59-72.
  17. Reier P.J., Anderson D.K., Thompson F.J., Stokes B.T. Neural tissue transplantation and CNS trauma: anatomical and functional repair of the injured spinal cord. J. Neurotrauma 1992; 9 Supp I: S223-48.
  18. Li Y., Chen J., Chen X.G. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 2002; 59: 514-23.
  19. Chen X., Katakowski M., Ki Y. Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J. Neurosci. Res. 2002; 69: 687-91.
  20. Sykova E., Jendelova P. In vivo tracking of stem cells in brain and spinal cord injury. Prog. Brain Res. 2007; 161: 367-83.
  21. Sykovfi E., Jendelovd P. Migration, fate and in vivo imaging of adult stem cells in the CNS. Cell Death Differ. 2007; 14(7): 1336-42.
  22. Vercelli A., Mereuta O.M., Garbossa D. et al. Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 2008; 31(3): 395-405.
  23. Freed C.R., Green P.E., Breeze R.E. et al. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. The New England Journal of Medicine 2001; 344: 710-9.
  24. Shao I., Cialella J.R., Yan H.Q. Differential effects of traumatic brain injury on vesicular acetylcholine transporter and M2 muscarinic receprot mRNA and protein in rat. J. Neurotrauma 1999; 1 6: 555-66.
  25. Dunnett S.B., Ryan C.N., Levin P.D. et al. Functional consequences of embryonic neocortex transplanted to rats with prefrontal cortex lesions. Behav. Neurosci. 1987; 101: 489-503.
  26. Bjorklund A., Stenevi U. Regeneration of monoaminergic and cholinergic neurons in mammalian central nervous system. Physiol. Rev. 1979; 59: 62-100.
  27. Varon S., Hagg Т., Manthorpe M. Nerve growth factor in CNS repair and regeneration. Adv. Exp. Med. Biol. 1991; 296; 267-76.
  28. Nieto-Sampedro M., Whitemore S.R., Needels D.I. et al. The survival of brain transplants is enhanced by extracts from injured brain. PNAS J. 1984; 81: 6252-4.
  29. Nieto-Sampedro M., Lewis E.R., Cotman C.W. Brain injury causes a time-dependent increase in neurotrophic activity at the lesion site. Science 1982; 217: 860-1.
  30. Wennersten A., Mejer X., Holmin S. et al. Proliferation, migration, and differentiation of human neural stem/progenitor cells after transplantation into a rat model of traumatic brain injury. J. Neurosurg. 2004; 100: 88-96.
  31. Poltavtseva R.A., Marey M.V., Aleksandrova M.A. et al. Evaluation of progenitor cell cultures from human embryos for neurotransplantation. Dev. Brain Res. 2002; 132: 149-54.
  32. Семченко В.В., Еринеев СИ., Степанова С.С, и др. Трансплантация незрелой нервной ткани в экспериментальной и клинической неврологии. Омск: ГУИПП Омский дом печати; 2000.
  33. Гайдар Б.В., Брюховецкий А.С, Шумаков В.И. Результаты и перспективы применения трансплантации клеток нервной ткани человека при боевой травме мозга. Бюл. эксп. Виол. мед. 1998; 126 Прилож. 1: 133-4.
  34. Парлюк О.В., Селедцов В.И., Рабинович С.С. и др. Результаты клеточной терапии, примененной в системе интенсивного лечения травматических ком. Клеточная трансплантология и тканевая инженерия 2008; Ш(3): 51-6.
  35. Riess P., Zhang С, Saatman K.E. et al. Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery 2002; 51: 1043-51.
  36. Smith D.H., Soares H.D., Pierce J.S. et al. A model of parasaggital controlled cortical impact in the mouse: Cognitive and histopathologic effects. J. Neurotrauma 1995; 12: 169-78.
  37. Raghupathi R. Cell death mechanisms following traumatic brain injury. Brain Pathology 2004; 14(2): 215-22.
  38. Covolan L., Ribeiro L.T., Longo B.M., Mello L.E. Cell damage and neurogenesis in the dentate granule cell layer of adult rats after pilocarpine-or kainate-induced status epilepticus. Hippocampus 2000; 10: 169-80.
  39. Eriksson P.S., Perfileva E., Bjork-Eriksson T. et al. Neurogenesis in the adult human hippocampus. Nat. Med. 1998; 4: 1313-7.
  40. Roy N.S., Wang S., Jiang L. et al. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat. Med. 2000; 6: 271-7.
  41. Kukelov V.G., Laywell E.D., Suslov 0. et al. Multipotent stem/ progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp. Neurol. 1999; 156: 333-44.
  42. Ryder E.F., Snyder E.Y., Cepko C.L. Establishment and characterization of multipotent neural cell lines using retrovirus vector-mediated oncogene transfer. J. Neurobiol. 1990; 21: 356-75.
  43. Snyder E.Y., Deitcher D.L., Walsh С et al. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 1992; 6: 33-51.
  44. Snyder E.Y. Immortalized neural stem cells: Insights into development - Prospects for gene therapy and repair. Proc. Assoc. Am. Physicians. 1995; 107: 195-204.
  45. Philips M.F., Mattiasson G., Wieloch T. et al. Neuroprotective and behavioral efficacy of nerve growth factor-transfected hippocampal progenitor cell transplants after experimental traumatic brain injury. J. Neurosurg. 2001; 94: 765-74.
  46. Andsberg G., Kokaia Z., Bjurklund A. et al. Amelioration of ishaemia-induced neuronal death in the rat striatum by NGF-secreting neural stem cells. Eur. J. Neurosci. 1998; 10: 2026-36.
  47. McDermott K.L., Raghupathi R., Fernandez S. Delayed administration of basic fibroblast growth factor (bFGF) attenuates cognitive dysfunction following parasaggital fluid percussion brain injury in the rat. J. Neurotrauma 1997; 14: 191-200.
  48. Saatman K.E., Conteras P.C., Smith D.H. Insulin-like growth factor-1 (IGF-1 ] improves both neurological motor and cognitive outcome following experimental brain injury. Exp. Neurol. 1997; 147: 418-27.
  49. Zhuravleva Z.N. The hippocampus and neurotransplantation. Neurosci. Behav. Physiol. 2005; 35(4): 343-54.
  50. Trojanowski J.Q., Mantione J.R., Lee J.H. Neurons derived from a human teratocarcinoma cell line establish molecular and structural polarity following transplantation into the rodent brain. Exp. Neurol. 1993; 122: 283-94.
  51. Kleppner S.R., Robinson K.A., Trojanowski J.Q., Lee V.M. Transplanted human neurons derived from teratocarcinoma cell line (NTera-2) mature, integrate, and survive for over 1 year in the nude mouse brain. J. Сотр. Neurol. 1995; 357: 618-32.
  52. Hartley R.S., Trojanowski J.Q., Lee V.M. Differential effects of spinal cord gray and white matter on process outgrowth from grafted human NTERA2 neurons (NT2N, hNT). J. Сотр. Neurol. 1999; 415: 404-18.
  53. Miyazono M., Nowell P.C., Finan J.L. et al. Long-term integration and neuronal differentiation of human embryonal carcinoma cells (NTera-2] transplanted into caudoputamen of nude mice. J. Сотр. Neurol. 1996; 376: 1-11.
  54. Kondziolka D., Wechsler L., Goldstein S. Transplantation of cultured human neuronal cells for patients with stroke. Neurology 200D; 55: 5Б5-9.
  55. Nelson P.Т., Kondziolka D., Wechsler L. Clonal human thNT) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation. Am. J. Pathol. 2D02; 1Б0: 1201-6.
  56. Б. Zhang C, Saatman K.E., Royo N.C. et al. Delayed transplantation of human neurons following brain injury in rats: a long-term graft survival and behavior study. Journal of Neurotrauma 2005; 22: 145Б-74.
  57. Trojanowski J.Q., Kleppner S.R., Hartley R.S. Transfectable and transplantable postmitotic human neurons: a potential "platform" for gene therapy of nervous system diseases. Exp. Neurol. 1ЭЭ7; 144: 92-7
  58. Bakshi A., Keck C.A., Koshkin V.S. et al. Caspase-mediated cell death predominates following engraftment of neural progenitor cells into traumatically injured rat brain. Brain Res. 2005; 10Б5(1-2): 8-19.
  59. Kaddis F.G., Clarkson E.D., Bell K.P. et al. Co-grafts of muscle cells and mesencephalic tissue into hemiparkinsonian rats: behavioral and histochemical results. Brain Res. Bull. 2000; 51: 203-11.
  60. Б0. Lu D., Li Y., Mahmood A., Wang L. et al. Neural and marrow-derived stromal cell sphere transplantation in a rat model of traumatic brain injury. J. Neurosurg. 2002; 97: 935-40.
  61. Б1. Bi L.X., Simmons D.J., Mainous E. Expression of BMP-2 by rat bone marrow stromal cells in culture. Calcif. Tissue Int. 1999; 64: БЗ-8.
  62. Б2. Laurenzi M.A., Beccari Т., Stenke L. et al. Expression of mRNA encoding neurotrophins and neurotrophin receptors in human granulocytes and bone marrow cells - enchanced neurotrophin-4 expression induced by LTB4. J. Leukoc. Biol. 1998; 64: 228-34.
  63. Yurek D.M., Seroogy K.B. Differential expression of neurotrophin and neurotrophin receptor mRNAs in and adjacent to fetal midbrain grafts implanted into the dopamine-denervated striatum. J. Сотр. Neurol. 2000; 423: 462-73.
  64. Azizi S.A., Stokes D., Augelli B.J. et al. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats -similarities to astrocyte grafts. PNAS 1998; 95: 3908-13.
  65. Andersson C, Tytell M., Brunso-Bechtold J. Transplantation of cultured type 1 astrocyte cell suspensions into young, adult and aged rat cortex: cell migration and survival. Int. J. Dev. Neurosci. 1993; 5: 555-68.
  66. Chopp M., Li Y. Treatment of neural injury with marrow stromal cells. Lancet Neurol. 2002; 1: 92-100.
  67. Mahmood A., Lu D., Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. Journal of Neurotrauma 2004; 21: 33-9.
  68. Mahmood A., Lu D., Chopp M. Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain. Meurosurg. 2004; 55: 1185-93.
  69. Mahmood A., Lu D., Qu C. et al. Human marrow stromal cell treatment provides long-lasting benefit sfter traumatic brain injury in rats. Meurosurg. 2005; 57: 102Б-31.
  70. Lu D., Mahmood A., Wang L. et al. Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Regeneration and Transplantation 2001; 12: 559-63.
  71. Lu D., Li Y., Wang L. et al. Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. Journal of Neurotrauma 2001; 8: 813-21.
  72. Mahmood A., Lu D., Wang L., Chopp M. Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury. Journal of Neurotrauma 2002; 19: 1609-18.
  73. Bhang S.H., Lee Y.E., Cho S.W. et al. Basic fibroblast growth factor promotes marrow stromal cell transplantation-mediated neural regeneration in traumatic brain injury. Biochem. Biophys. Res. Comm. 2007; 359: 40-5.
  74. Munoz-Elias G., Marcus A.J., Coyne T.M. et al. Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. J. Neurosci. 2004; 24: 4585-95.
  75. Alvarez-Dolado M., Pardal R., Garcia-Verdugo J.M. et al. Fusion of bone marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003; 425: 968-73.
  76. Б. Weimann J.M., Charlton C.A., Brazelton T.R. et al. Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. PNAS USA 2003; 100: 2088-93.
  77. Bertani N., Malatesta P., Volpi G. et al. Neurogenic potential of human mesenchymal stem cells revisited: analysis by immunostaining, time-lapse video and microarray. J. Cell Sci. 2005; 118: 3925-ЗБ.
  78. Deng J., Petersen B.E., Steindler D.A. et al. Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 2006; 24: 1054-64.
  79. Tondreau Т., Dejeneffe M., Meuleman N. et al. Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells. BMC Genomics 2008; 9: 166-77.
  80. Arnold S., Klein H., Klinz F.J. et al. Human bone marrow stroma cells display certain neural characteristics and integrate in the subventricular compartment after injection into the liquor system. Eur. J. Cell Biol. 2006; 85(6): 551-Б5.
  81. Choong P.F., Мок P.L., Cheong S.K. et al. Generating neuron-like cells from BM-derived mesenchymal stromal cells in vitro. Cytotherapy 2007; 9(2): 170-83.
  82. Tropel P., Platet N., Platel J.С et al. Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells 2007; 25(2): 543
  83. Cho K.J., Trzaska K.A., Greco S.J. et al. Neurons derived from human mesenchymal stem cells show synaptic transmission and can be induced to produce the neurotransmitter Substance P by lnterleukin-16. Stem Cells 2005; 23: 383-91.
  84. Shin C.C., Fu L., Zhu L. et al. Derivation of neural stem cells from mesenchymal stem cells: evidence for a bipotential stem cell population. Stem Cells Dev. 2008; In Print.
  85. Keilhoff G., Goihl A., Langnflse K. et al. Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells. Eur. J. Cell. Biol. 200Б; 85(1): 11-24.

Copyright (c) 2009 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 57156 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies