Alcohol and Immunity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The review systematizes data characterizing the impact of moderate and excessive alcohol consumption on the immune system of humans and animals. In particular, the results of experimental and clinical studies on the effect of ethanol on the function of cells of congenital and adaptive immunity are presented, depending on the dose and duration of its exposure, which affects the response of the organism to agents of an infectious and non-infectious nature. The issues of chronic lymphopenia induced by chronic alcohol consumption are discussed in detail, which leads to a decrease in the number of naive lymphocytes in circulation. The dose-dependent and temporary effects of alcohol on the functional activity and homeostasis of immune cells of the central nervous system (CNS), in particular, astrocytes and microglia, are considered. In general, the review analyzed a complex of complex interactions between ethanol, its metabolites and functional activity of the hypothalamic-pituitary-adrenal system and the immune system.

Full Text

Restricted Access

About the authors

N. D Gazatova

Immanuel Kant Baltic Federal University

K. A Yurova

Immanuel Kant Baltic Federal University

D. V Gavrilov

Narcological Dispensary of the Kaliningrad Region

L. S Litvinova

Immanuel Kant Baltic Federal University



  1. Barr T., Helms C., Grant K. et al. Opposing effects of alcohol on the immune system. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016; 65: 242-51.
  2. Hoeppner B.B., Stout R.L., Jackson K.M. et al. How good is fine-grained Timeline Follow-back data? Comparing 30-day TLFB and repeated 7-day TLFB alcohol consumption reports on the person and daily level. Addict. Behav. 2010; 35(12): 1138-43.
  3. Корольков А.И. Преморбид и клиника алкоголизма в зависимости от количества потребляемого больными алкоголя. Автореферат дисс. на соискание уч. степ. канд. мед. наук. Москва: Национальный научный центр наркологии; 2012.
  4. O’Keefe J.H., Bybee K.A., Lavie C.J. Alcohol and cardiovascular health: the razor-sharp double-edged sword. J. Am. Coll. Cardiol. 2007; 50(11): 1009-14.
  5. Holmes M.V., Dale C.E., Zuccolo L. et al. Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data. BMJ 2014; 349: g4164.
  6. Jimenez V.A., Grant K.A. Studies using macaque monkeys to address excessive alcohol drinking and stress interactions. Neuropharmacology 2017; 122: 127-35.
  7. Neupane S.P. Neuroimmune Interface in the Comorbidity between Alcohol Use Disorder and Major Depression. Front. Immunol. 2016; 7: 655.
  8. Zakhari S. Overview: how is alcohol metabolized by the body? Alcohol Res. Health 2006; 29(4): 245-54.
  9. Chan L.N., Anderson G.D. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol). Clin. Pharmacokinet. 2014; 53(12): 1115-36.
  10. Lind P.A., Macgregor S., Heath A.C. et al. Association between in vivo alcohol metabolism and genetic variation in pathways that metabolize the carbon skeleton of ethanol and NADH reoxidation in the alcohol challenge twin study. Alcohol. Clin. Exp. Res. 2012; 36(12): 2074-85.
  11. Ströhle A., Wolters M., Hahn A. Alcohol intake--a two-edged sword. Part 1: metabolism and pathogenic effects of alcohol. Med. Monatsschr. Pharm. 2012; 35(8): 281-92.
  12. Tuma D.J., Casey C.A. Dangerous byproducts of alcohol breakdown--focus on adducts. Alcohol Res. Health 2003; 27(4): 285-90.
  13. Sapkota M., DeVasure J.M., Kharbanda K.K. et al. Malondialdehyde-acetaldehyde (MAA) adducted surfactant protein induced lung inflammation is mediated through scavenger receptor a (SR-A1). Respir. Res. 2017; 18(1): 36.
  14. Ren Z., Wang X., Xu M. et al. Binge ethanol exposure causes endoplasmic reticulum stress, oxidative stress and tissue injury in the pancreas. Oncotarget 2016; 7(34): 54303-16.
  15. Freeman W.M., Vanguilder H.D., Guidone E. et al. Plasma proteomic alterations in non-human primates and humans after chronic alcohol self-administration. Int. J. Neuropsychopharmacol. 2011; 14(7): 899-911.
  16. Carter R.C., Senekal M., Dodge N.C. et al. Maternal Alcohol Use and Nutrition During Pregnancy: Diet and Anthropometry. Alcohol. Clin. Exp. Res. 2017; 41(12): 2114-27.
  17. Vidya M.K., Kumar V.G., Sejian V. et al. Toll-like receptors: Significance, ligands, signaling pathways, and functions in mammals. Int. Rev. Immunol. 2017; 13: 1-17.
  18. Бурганова Г.Р., Деев Р.В., Киясов А.П. Роль макрофагов в патоморфогенезе алкогольной болезни печени. Гены и клетки 2017; XII(1): 38-40.
  19. Janeway C. Janeway’s Immunobiology. New York: Garland Science, Taylor & Francis Group, LLC; 2008.
  20. Mandrekar P., Bala S., Catalano D. et al. The opposite effects of acute and chronic alcohol on lipopolysaccharide-induced inflammation are linked to IRAK-M in human monocytes. J. Immunol. 2009; 183(2): 1320-7.
  21. Zhang Z., Bagby G.J., Stoltz D. et al. Prolonged ethanol treatment enhances lipopolysaccharide/phorbol myristate acetate-induced tumor necrosis factor-alpha production in human monocytic cells. Alcohol. Clin. Exp. Res. 2001; 25(3): 444-9.
  22. Mandrekar P., Jeliazkova V., Catalano D. et al. Acute alcohol exposure exerts anti-inflammatory effects by inhibiting IkappaB kinase activity and p65 phosphorylation in human monocytes. J. Immunol. 2007; 178(12): 7686-93.
  23. Mandrekar P., Catalano D., Jeliazkova V. et al. Alcohol exposure regulates heat shock transcription factor binding and heat shock proteins 70 and 90 in monocytes and macrophages: implication for TNF-alpha regulation. J. Leukoc. Biol. 2008; 84(5): 1335-45.
  24. Muralidharan S., Ambade A., Fulham M.A. et al. Moderate Alcohol Induces Stress Proteins HSF1 and hsp70 and Inhibits Proinflammatory Cytokines Resulting in Endotoxin Tolerance. J. Immunol. 2014; 193(4): 1975-87.
  25. Pang M., Bala S., Kodys K. et al. Inhibition of TLR8- and TLR4-induced Type I IFN induction by alcohol is different from its effects on inflammatory cytokine production in monocytes. BMC Immunol. 2011; 12: 55.
  26. Pruett S.B., Zheng Q., Fan R.P. et al. Ethanol suppresses cytokine responses induced through Toll-like receptors as well as innate resistance to Escherichia coli in a mouse model for binge drinking. Alcohol 2004; 33(2): 147-55.
  27. Pruett S.B., Fan R., Zheng Q. et al. Differences in IL-10 and IL-12 production patterns and differences in the effects of acute ethanol treatment on macrophages in vivo and in vitro. Alcohol 2005; 37(1): 1-8.
  28. Pruett B., Pruett S. An explanation for the paradoxical induction and suppression of an acute phase response by ethanol. Alcohol 2006; 39(2): 105-10.
  29. Afshar M., Richards S., Mann D. et al. Acute immunomodulatory effects of binge alcohol ingestion. Alcohol 2014; 49(1): 57-64.
  30. Trahtemberg U., Mevorach D. Apoptotic Cells Induced Signaling for Immune Homeostasis in Macrophages and Dendritic Cells. Front. Immunol. 2017; 8: 1356.
  31. Boe D.M., Richens T.R., Horstmann S.A. et al. Acute and chronic alcohol exposure impair the phagocytosis of apoptotic cells and enhance the pulmonary inflammatory response. Alcohol. Clin. Exp. Res. 2010; 34(10): 1723-32.
  32. Romeo J., Warnberg J., Nova E. et al. Changes in the immune system after moderate beer consumption. Ann. Nutr. Metab. 2007; 51(4): 359-66.
  33. Bertola A., Mathews S., Ki S.H. et al. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat. Protocols 2013; 8(3): 627-37.
  34. Maraslioglu M., Oppermann E., Blattner C. et al. Chronic ethanol feeding modulates inflammatory mediators, activation of nuclear factor-kappaB, and responsiveness to endotoxin in murine Kupffer cells and circulating leukocytes. Mediators Inflamm. 2014; 2014: 808695.
  35. Kishore R., McMullen M.R., Nagy L.E. Stabilization of tumor necrosis factor alpha mRNA by chronic ethanol: role of A + U-rich elements and p38 mitogen-activated protein kinase signaling pathway. J. Biol. Chem. 2001; 276(45): 41930-7.
  36. McClain C.J., Cohen D.A. Increased tumor necrosis factor production by monocytes in alcoholic hepatitis. Hepatology 1989; 9(3): 349-51.
  37. O’Keeffe M., Mok W.H., Radford K.J. Human dendritic cell subsets and function in health and disease. Cell. Mol. Life Sci. 2015; 72(22): 4309-25.
  38. Mandrekar P., Catalano D., Dolganiuc A. et al. Inhibition of myeloid dendritic cell accessory cell function and induction of T cell anergy by alcohol correlates with decreased IL-12 production. J. Immunol. 2004; 173(5): 3398-407.
  39. Lau A., Abe M., Thomson A. Ethanol affects the generation, cosignaling molecule expression, and function of plasmacytoid and myeloid dendritic cell subsets in vitro and in vivo. J. Leukoc. Biol. 2006; 79(5): 941-53.
  40. Szabo G., Catalano D., White B. et al. Acute alcohol consumption inhibits accessory cell function of monocytes and dendritic cells. Alcohol. Clin. Exp. Res. 2004; 28(5): 824-8.
  41. Grant K.A., Stafford J., Thiede A. et al. Who is at risk? Population characterization of alcohol self-administration in nonhuman primates helps identify pathways to dependence. Alcohol Res. Health 2008; 31(4): 289-97.
  42. Asquith M., Pasala S., Engelmann F. et al. Chronic Ethanol Consumption Modulates Growth Factor Release, Mucosal Cytokine Production, and MicroRNA Expression in Nonhuman Primates. Alcohol. Clin. Exp. Res. 2013: 38(4): 980-93.
  43. Curtis B.J., Zahs A., Kovacs E.J. Epigenetic targets for reversing immune defects caused by alcohol exposure. Alcohol Res. 2013; 35(1): 97-113.
  44. Mili F., Flanders W.D., Boring J.R. et al. The associations of alcohol drinking and drinking cessation to measures of the immune system in middle-aged men. Alcohol. Clin. Exp. Res. 1992; 16(4): 688-94.
  45. Gheorghiu M., Bara C., Pasarica D. et al. Ethanol-induced dysfunction of hepatocytes and leukocytes in patients without liver failure. Roum. Arch. Microbiol. Immunol. 2004; 63(1-2): 5-33.
  46. Percival S.S., Sims C.A. Wine modifies the effects of alcohol on immune cells of mice. J. Nutr. 2000; 130(5): 1091-4.
  47. Boyadjieva N.I., Dokur M., Advis J.P. et al. Beta-endorphin modulation of lymphocyte proliferation: effects of ethanol. Alcohol. Clin. Exp. Res. 2002; 26(11): 1719-27.
  48. Slukvin I.I., Jerrells T.R. Different pathways of in vitro ethanol-induced apoptosis in thymocytes and splenic T and В lymphocytes. Immunopharmacology 1995; 31(1): 43-57.
  49. Cook R.T., Waldschmidt T.J., Ballas Z.K. et al. Fine T-cell subsets in alcoholics as determined by the expression of L-selectin, leukocyte common antigen, and beta-integrin. Alcohol. Clin. Exp. Res. 1994; 18(1): 71-80.
  50. Cook R.T., Ballas Z.K., Waldschmidt T.J. et al. Modulation of T-cell adhesion markers, and the CD45R and CD57 antigens in human alcoholics. Alcohol. Clin. Exp. Res. 1995; 19(3): 555-63.
  51. Zhang H., Meadows G.G. Chronic alcohol consumption in mice increases the proportion of peripheral memory T cells by homeostatic proliferation. J. Leukoc. Biol. 2005; 78(5): 1070-80.
  52. Chou J.P., Effros R.B. T cell replicative senescence in human aging. Curr. Pharm. Des. 2013; 19(9): 1680-98.
  53. Sokhonevich N.A., Khaziakhmatova O.G., Yurova K.A. et al. Phenotypic characterization and functional features of memory T- and В-Cells. Tsi-tologiia 2015; 57(5): 311-8.
  54. Todosenko N.M., Khaziakhmatova O.G., Yurova K.A. et al. The influence of methylprednisolone on the ability of CD4+CD95+HLA-DR+ T-cells to produce proinflammatory medators in cultures of tcr-activated CD3+CD45RO+ T-lymphocytes from patients with rheumatoid arthritis. Biomed. Khimiya 2017; 63(3): 255-65.
  55. Appay V., Sauce D. Naive T cells: the crux of cellular immune aging? Exp. Gerontol. 2014; 54: 90-3.
  56. Cook R., Garvey M., Booth В. et al. Activated CD-8 cells and HLA DR expression in alcoholics without overt liver disease. J. Clin. Immunol. 1991; 11(5): 246-53.
  57. Gonzalez-Quintela A., Alende R., Gude F. et al. Serum levels of immunoglobulins (IgG, IgA, IgM) in a general adult population and their relationship with alcohol consumption, smoking and common metabolic abnormalities. Clin. Exp. Immunol. 2008; 151(1): 42-50.
  58. Wands J.R., Dienstag J.L., Weake J.R. et al. In vitro studies of enhanced IgG synthesis in severe alcoholic liver disease. Clin. Exp. Immunol. 1981; 44(2): 396-404.
  59. Budec M., Koko V., Todorovic V. et al. Possible mechanism of acute effect of ethanol on intestinal IgA expression in rat. Int. Immunopharmacol. 2007; 7(6): 858-63.
  60. Muhlbauer E., Karsten U., Rottmann M. et al. Impaired immunoglobulin M production by incubation of hybridoma cells with ethanol. Alcohol 2001; 24(3): 179-87.
  61. Thiele G.M., Duryee M.J., Willis M.S. et al. Autoimmune hepatitis induced by syngeneic liver cytosolic proteins biotransformed by alcohol metabolites. Alcohol. Clin. Exp. Res. 2010; 34(12): 2126-36.
  62. Raju S.V., Painter R.G., Bagby G.J. et al. Response of Differentiated Human Airway Epithelia to Alcohol Exposure and Klebsiella Pneumoniae Challenge. Med. Sci. (Basel) 2013; 1(1): 2-19.
  63. Traphagen N., Tian Z., Allen-Gipson D. Chronic Ethanol Exposure: Pathogenesis of Pulmonary Disease and Dysfunction. Biomolecules 2015; 5(4): 2840-53.
  64. Kaphalia L., Calhoun W.J. Alcoholic lung injury: metabolic, biochemical and immunological aspects. Toxicol. Lett. 2013; 222(2): 171-9.
  65. Panic E., Panic I. Chronic alcoholics’ knowledge regarding tuberculosis. Pneumologia 2001; 50(4): 232-5.
  66. Alavi M., Janjua N.Z., Chong M. et al. The contribution of alcohol-use disorder to decompensated cirrhosis among people with hepatitis C: an international study. J. Hepatol. 2018; 68(3): 393-401.
  67. Baum M.K., Rafie C., Lai S. et al. Alcohol use accelerates HIV disease progression. AIDS Res. Hum. Retroviruses 2010; 26(5): 511-8.
  68. Bhattacharya R., Shuhart M.C. Hepatitis C and alcohol: interactions, outcomes, and implications. J. Clin. Gastroenterol. 2003; 36(3): 242-52.
  69. Pasala S., Barr T., Messaoudi I. Impact of Alcohol Abuse on the Adaptive Immune System. Alcohol Res. 2015; 37(2): 185-97.
  70. Meyerholz D.K., Edsen-Moore M., McGill J. et al. Chronic alcohol consumption increases the severity of murine influenza virus infections. J. Immunol. 2008; 181(1): 641-8.
  71. Gurung P., Young B.M., Coleman R.A. et al. Chronic ethanol induces inhibition of antigen-specific CD8+ but not CD4+ immunodominant T cell responses following Listeria monocytogenes inoculation. J. Leukoc. Biol. 2009; 85(1): 34-43.
  72. Marcondes M.C., Watry D., Zandonatti M. et al. Chronic alcohol consumption generates a vulnerable immune environment during early SIV infection in rhesus macaques. Alcohol. Clin. Exp. Res. 2008; 32(9): 1583-92.
  73. Zhang P., Bagby G.J., Boe D.M. et al. Acute alcohol intoxication suppresses the CXC chemokine response during endotoxemia. Alcohol. Clin. Exp. Res. 2002; 26(1): 65-73.
  74. Cohen S., Tyrrell D.A., Russell M.A. et al. Smoking, alcohol consumption, and susceptibility to the common cold. Am. J. Public Health 1993; 83(9): 1277-83.
  75. Takkouche В., Regueira-Méndez C., Garcia-Closas R. et al. Intake of Wine, Beer, and Spirits and the Risk of Clinical Common Cold. Am. J. Epidemiol. 2002; 155(9): 853-8.
  76. Ouchi E., Niu K., Kobayashi Y. et al. Frequent alcohol drinking is associated with lower prevalence of self-reported common cold: a retrospective study. BMC Public Health 2012; 12: 987.
  77. Mendenhall C.L., Theus S.A., Roselle G.A. et al. Biphasic in vivo immune function after low- versus high-dose alcohol consumption. Alcohol 1997; 14(3): 255-60.
  78. Messaoudi I., Asquith M., Engelmann F. et al. Moderate alcohol consumption enhances vaccine-induced responses in rhesus macaques. Vaccine 2013; 32(1): 54-61.
  79. Imhof A., Froehlich M., Brenner H. et al. Effect of alcohol consumption on systemic markers of inflammation. Lancet 2001; 357(9258): 763-7.
  80. Albert M.A., Glynn R.J., Ridker P.M. Alcohol consumption and plasma concentration of C-reactive protein. Circulation 2003; 107(3): 443-7.
  81. Pai J.K., Hankinson S.E., Thadhani R. et al. Moderate alcohol consumption and lower levels of inflammatory markers in US men and women. Atherosclerosis 2006; 186(1): 113-20.
  82. Joosten M.M., van Erk M.J., Pellis L. et al. Moderate alcohol consumption alters both leucocyte gene expression profiles and circulating proteins related to immune response and lipid metabolism in men. Br. J. Nutr. 2012; 108(4): 620-7.
  83. Helms C.M., Messaoudi I., Jeng S. et al. A Longitudinal Analysis of Circulating Stress-Related Proteins and Chronic Ethanol Self-Administration in Cynomolgus Macaques. Alcohol. Clin. Exp. Res. 2012; 36(6): 995-1003.
  84. Dong Y., Benveniste E.N. Immune function of astrocytes. Glia 2001; 36(2): 180-90.
  85. Sarc L., Wraber B., Lipnik-Stangelj M. Ethanol and acetaldehyde disturb TNF-alpha and IL-6 production in cultured astrocytes. Hum. Exp. Toxicol. 2011; 30(9): 1256-65.
  86. Block M.L., Zecca L., Hong J.S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 2007; 8(1): 57-69.
  87. Dheen S.T., Kaur C., Ling E.A. Microglial activation and its implications in the brain diseases. Curr. Med. Chem. 2007; 14(11): 1189-97.
  88. McClain J.A., Morris S.A., Deeny M.A. et al. Adolescent binge alcohol exposure induces long-lasting partial activation of microglia. Brain Behav. Immun. 2011; 25 Suppl 1: S120-8.
  89. Fernandez-Lizarbe S., Pascual M., Guerri C. Critical role of TLR4 response in the activation of microglia induced by ethanol. J. Immunol. 2009; 183(7): 4733-44.
  90. Myers B., McKlveen J.M., Herman J.P. Glucocorticoid actions on synapses, circuits, and behavior: implications for the energetics of stress. Front. Neuroendocrinol. 2014; 35(2): 180-96.
  91. Becker H.C. Influence of stress associated with chronic alcohol exposure on drinking. Neuropharmacology 2017; 122: 115-26.
  92. Dringenberg T., Schwitalla M., Haase M. et al. Control of CYP11B2/ CYP11B1 expression ratio and consequences for the zonation of the adrenal cortex. Horm. Metab. Res. 2013; 45(2): 81-5.
  93. O’Connor T.M., O’Halloran D.J., Shanahan F. The stress response and the hypothalamic-pituitary-adrenal axis: from molecule to melancholia. QJM 2000; 93(6): 323-33.
  94. Nguyen A.D., Conley A.J. Adrenal androgens in humans and nonhuman primates: production, zonation and regulation. Endocr. Dev. 2008; 13: 33-54.
  95. Smith S.M., Vale W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 2006; 8(4): 383-95.
  96. Busillo J.M., Cidlowski J.A. The five Rs of glucocorticoid action during inflammation: ready, reinforce, repress, resolve, and restore. Trends Endocrinol. Metab. 2013; 24(3): 109-19.
  97. Gutsol A.A., Sokhonevich N.A., Seledtsov V.I. et al. Dexamethasone effects on activation and proliferation of immune memory T cells. Bull. Exp. Biol. Med. 2013; 155(4): 474-6.
  98. Zheng G., Zhong S., Geng Y. et al. Dexamethasone promotes tolerance in vivo by enriching CD11clo CD40lo tolerogenic macrophages. Eur. J. Immunol. 2013; 43(1): 219-27.
  99. Jin X., Qin Q., Tu L. et al. Glucocorticoids inhibit the innate immune system of human corneal fibroblast through their suppression of toll-like receptors. Mol. Vis. 2009; 15: 2435-41.
  100. Todosenko N.M., Koroleva Yu.A., Khaziakhmatova O.G. et al. Genomic and non-genomic effects of glucocorticoids. Genes and Cells 2017; 12(1): 27-33.
  101. Chinenov Y., Rogatsky I. Glucocorticoids and the innate immune system: crosstalk with the toll-like receptor signaling network. Mol. Cell. Endocrinol. 2007; 275(1-2): 30-42.
  102. Busillo J.M., Azzam K.M., Cidlowski J.A. Glucocorticoids sensitize the innate immune system through regulation of the NLRP3 inflammasome. J. Biol. Chem. 2011; 286(44): 38703-13.
  103. Jaremka L.M., Glaser R., Loving T.J. et al. Attachment anxiety is linked to alterations in cortisol production and cellular immunity. Psychol. Sci. 2013; 24(3): 272-9.
  104. Copeland W.E., Wolke D., Lereya S.T. et al. Childhood bullying involvement predicts low-grade systemic inflammation into adulthood. PNAS USA 2014; 111(21): 7570-5.
  105. Copertaro A., Bracci M., Manzella N. et al. Low perceived social support is associated with CD8+CD57+ lymphocyte expansion and increased TNF-alpha levels. Biomed. Res. Int. 2014; 2014: 635784.
  106. Yi B., Rykova M., Feuerecker M. et al. 520-d Isolation and confinement simulating a flight to Mars reveals heightened immune responses and alterations of leukocyte phenotype. Brain Behav. Immun. 2014; 40: 203-10.
  107. Boyd K.N., Kumar S., O’Buckley T.K. et al. Ethanol induction of steroidogenesis in rat adrenal and brain is dependent upon pituitary ACTH release and de novo adrenal StAR synthesis. J. Neurochem. 2010; 112(3): 784-96.
  108. King A., Munisamy G., de Wit H. et al. Attenuated cortisol response to alcohol in heavy social drinkers. Int. J. Psychophysiol. 2006; 59(3): 203-9.
  109. Richardson H.N., Lee S.Y., O’Dell L.E. et al. Alcohol self-administration acutely stimulates the hypothalamic-pituitary-adrenal axis, but alcohol dependence leads to a dampened neuroendocrine state. Eur. J. Neurosci. 2008; 28(8): 1641-53.
  110. Childs E., O’Connor S., de Wit H. Bidirectional interactions between acute psychosocial stress and acute intravenous alcohol in healthy men. Alcohol. Clin. Exp. Res. 2011; 35(10): 1794-803.
  111. Blaine S.K., Sinha R. Alcohol, stress, and glucocorticoids: From risk to dependence and relapse in alcohol use disorders. Neuropharmacology 2017; 122: 136-47.
  112. Kim H.J., Ha M., Park C.H. et al. StAR and steroidogenic enzyme transcriptional regulation in the rat brain: effects of acute alcohol administration. Brain Res. Mol. Brain Res. 2003; 115(1): 39-49.
  113. Cagetti E., Pinna G., Guidotti A. et al. Chronic intermittent ethanol (CIE) administration in rats decreases levels of neurosteroids in hippocampus, accompanied by altered behavioral responses to neurosteroids and memory function. Neuropharmacology 2004; 46(4): 570-9.
  114. Burford N.G., Webster N.A., Cruz-Topete D. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System. Int. J. Mol. Sci. 2017; 18(10): E2150.
  115. Hsieh C.H., Li H.Y., Chen J.C. Nitric oxide and interleukin-1beta mediate noradrenergic induced corticotrophin-releasing hormone release in organotypic cultures of rat paraventricular nucleus. Neuroscience 2010; 165(4): 1191-202.
  116. Doremus-Fitzwater T.L., Buck H.M., Bordner K. et al. Intoxication- and withdrawal-dependent expression of central and peripheral cytokines following initial ethanol exposure. Alcohol. Clin. Exp. Res. 2014; 38(8): 2186-98.
  117. Hao Y., Jing H., Bi Q. et al. Intra-amygdala microinfusion of IL-6 impairs the auditory fear conditioning of rats via JAK/STAT activation. Behav. Brain Res. 2014; 275: 88-95.
  118. Sheridan G.K., Wdowicz A., Pickering M. et al. CX3CL1 is up-regulated in the rat hippocampus during memory-associated synaptic plasticity. Front. Cell. Neurosci. 2014; 8: 233.

Copyright (c) 2018 Eco-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 85657 от 21.07.2023 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies