The role of skeletal muscle tissue extracellular matrix components in myogenesis

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This review summarizes data on the structure and composition of the extracellular matrix of skeletal muscle tissue. The functions of its main components and their influence on the differentiation of cells in the myogenic direction are considered.

Full Text

Restricted Access

About the authors

T. V Stupnikova

Institute of General Pathology and Pathophysiology

I. I Eremin

Institute of General Pathology and Pathophysiology; JSC «Generium»

V. L Zorin

Institute of General Pathology and Pathophysiology; PJSC “Human Stem Cells Institute"

P. B Kopnin

Institute of General Pathology and Pathophysiology; N.N. Blokhin National Medical Research Center of Oncology

I. R Gilmutdinova

Institute of General Pathology and Pathophysiology; National Medical Research Center for Rehabilitation and Balneology

I. N Saburina

Institute of General Pathology and Pathophysiology; Russian Medical Academy of Continuous Professional Education

A. A Pulin

Institute of General Pathology and Pathophysiology; JSC «Generium»; Russian Medical Academy of Continuous Professional Education

Email: andreypulin@gmail.com

References

  1. Зорин В.Л., Зорина А.И., Пулин А.А. и др. Перспективы использования клеток, обладающих миогенным потенциалом, в лечении заболеваний скелетных мышц: обзор исследований. Ч. 1. Сателлитные клетки. Патологическая физиология и экспериментальная терапия 2015; 59(2): 88-98.
  2. Зорин В.Л., Зорина А.И., Пулин А.А. и др. Перспективы использования стволовых клеток, обладающих миогенным потенциалом, в лечении заболеваний скелетных мышц: обзор исследований. Ч. 2. Популяции стволовых клеток мышечного и немышечного происхождения. Патологическая физиология и экспериментальная терапия 2015; 59(3): 106-17.
  3. Charge S.B., Rudnicki M.A. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 2004; 84: 209-38.
  4. Droguett R., Cabello-Verrugio C., Riquelme C. et al. Extracellular proteoglycans modify TGF-beta bio-availability attenuating its signaling during skeletal muscle differentiation. Matrix Biol. 2006; 25: 332-41.
  5. Kamiya N., Watanabe H., Habuchi H. et al. Versican/PG-M regulates chondrogenesis as an extracellular matrix molecular crucial for mesenchymal condensation. J. Biol. Chem. 2006; 281: 2390-400.
  6. Theocharis A.D., Skandalis S.S., Gialeli C. et al. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016; 97: 4-27.
  7. Hurd S.A., Bhatti N.M., Walker A.M. et al. Development of a biological scaffold engineered using the extracellular matrix secreted by skeletal muscle cells. Biomaterials 2015; 49: 9-17.
  8. Gilbert T.W., Gilbert S., Madden M. et al. Morphologic assessment of extracellular matrix scaffolds for patch tracheoplasty in a canine model. Ann. Thorac. Surg. 2008; 86(3): 967-74.
  9. Wang Z., Li Z., Li Z. et al. Cartilaginous extracellular matrix derived from decellularized chondrocyte sheets for the reconstruction of osteochondral defects in rabbits. Acta Biomater. 2018; 81: 129-45.
  10. Qureshi O.S., Bon H., Twomey B. et al. An immunofluorescence assay for extracellular matrix components highlights the role of epithelial cells in producing a stable, fibrillar extracellular matrix. Biol. Open 2017; 6(10): 1423-33.
  11. Badylak S.F., Freytes D.O., Gilbert T.W. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009; 5(1): 1-13.
  12. Engin A.B., Nikitovic D., Neagu M. et al. Mechanistic understanding of nanoparticles' interactions with extracellular matrix: the cell and immune system. Part. Fibre Toxicol. 2017; 14(1): 22.
  13. Krishnan P., Purushothaman K.R., Purushothaman M. et al. Enhanced neointimal fibroblast, myofibroblast content and altered extracellular matrix composition: Implications in the progression of human peripheral artery restenosis. Atherosclerosis 2016; 251: 226-33.
  14. Louzao-Martinez L., Vink A., Harakalova M. et al. Characteristic adaptations of the extracellular matrix in dilated cardiomyopathy. Int. J. Cardiol. 2016; 220: 634-46.
  15. Одинцова И. А., Данилов Р.К., Гололобов В.Г. и др. Особенности регенерационного гистогенеза при заживлении кожно-мышечных ран и костных переломов. Морфология 2016; 149(3): 153-4.
  16. Найденова Ю.Г. Морфологическая характеристика скелетной мышечной ткани в регенерационном гистогенезе. Дисс..канд. мед. наук. Санкт-Петербург: Военно-мед. акад., 1997.
  17. Volodina A.V., Pozdnyakov O.M. A comparative study of posttraumatic and prenatal angio- and myogenesis in mammals. Bull. Exp. Biol. Med. 1997; 124(4): 1025-30.
  18. Sicari B.M., Dziki J._., Siu B.F. et al. The promotion of a constructive macrophage phenotype by solubilized extracellular matrix. Biomaterials 2014; 35(30): 8605-12.
  19. Kelc R., Trapecar M., Gradisnik _. et al. Platelet-rich plasma, especially when combined with a TGF-ß inhibitor promotes proliferation, viability and myogenic differentiation of myoblasts in vitro. P_oS One 2015; 10(2): 0117302.
  20. Fry A.M., O'Regan _., Montgomery J. et al. EM_ proteins in microtubule regulation and human disease. Biochem. Soc. Trans. 2016; 44(5): 1281-8.
  21. Oskarsson T., Orend G. Stem cells and matrix. Int. J. Biochem. Cell Biol. 2016; 81(A): 165.
  22. Bildyug N.B., Voronkina I.V., Smagina _.V. et al. Matrix metalloproteinases in primary culture of cardiomyocytes. Biochemistry (Mosc.) 2015; 80(10): 1318-26.
  23. AbouIssa A., Mari W., Simman R. Clinical usage of an extracellular, collagen-rich matrix: a case series. Wounds 2015; 27(11): 313-8.
  24. Mongiat M., Andreuzzi E., Tarticchio G. et al. Extracellular matrix, a hard player in angiogenesis. Int. J. Mol. Sci. 2016: 17(11): 1822.
  25. Calve S., Odelberg S.J., Simon H.G. A transitional extracellular matrix instructs cell behavior during muscle regeneration. Dev. Biol. 2010; 44(1): 259-71.
  26. Frantz C., Stewart K.M., Weaver V.M. The extracellular matrix at a glance. J. Cell Sci. 2010; 123(24): 4195-200.
  27. Pataridis S., Eckhardt A., Mikulikovâ K. et al. Identification of collagen types in tissues using HPLC-MS/MS. J. Sep. Sci. 2008; 31(20): 3483-8.
  28. Heckmann L., Fiedler J., Mattes T. et al. Interactive effects of growth factors and three-dimensional scaffolds on multipotent mesenchymal stromal cells. Biotechnol. Appl. Biochem. 2008; 49(3): 185-94.
  29. Kroehne V., Heschel I., Schügner F. et al. Use of a novel collagen matrix with oriented pore structure for muscle cell differentiation in cell culture and in grafts. J. Cell. Mol. Med. 2008; 12(5A): 1640-8.
  30. Carnio S., Serena E., Rossi C.A. et al. Three-dimensional porous scaffold allows long-term wild-type cell delivery in dystrophic muscle. J. Tissue Eng. Regen. Med. 2011; 5(1): 1-10.
  31. Ciofani G., Genchi G.G., Liakos I. et al. Human recombinant elastin-like protein coatings for muscle cell proliferation and differentiation. Acta Biomater. 2013; 9: 5111-21.
  32. D’Andrea P., Scaini D., Ulloa Severino L. et al. In vitro myogenesis induced by human recombinant elastin-like proteins. Biomaterials 2015; 67: 240-53.
  33. Stanton M.M., Parrillo A., Thomas G.M. et al. Fibroblast extracellular matrix and adhesion on micro-textured polydimethylsiloxane (PDMS) scaffolds. J. Biomed. Mater. Res. B: Appl. Biomater. 2015; 103(4): 861-9.
  34. Seeger T., Hart M., Patarroyo M. et al. Mesenchymal stromal cells for sphincter regeneration: role of laminin isoforms upon myogenic differentiation. PLoS One 2015; 10(9): 0137419.
  35. Bushby K.M., Pollitt C., Johnson M.A. et al. Muscle pain as a prominent feature of facioscapulohumeral muscular dystrophy (FSHD): four illustrative case reports. Neuromuscul. Disord. 1998; 8(8): 574-9.
  36. Parker F., White K., Phillips S. et al. Promoting differentiation of cultured myoblasts using biomimetic surfaces that present alpha-laminin-2 peptides. Cytotechnology 2016; 68(5): 2159-69.
  37. Velleman S.G., Liu C., Coy C.S. et al. Effects of glypican-1 on turkey skeletal muscle cell proliferation, differentiation and fibroblast growth factor 2 responsiveness. Dev. Growth Differ. 2006; 48(4): 271-6.
  38. Casar J.C., Cabello-Verrugio C., Olguin H. et al. Heparan sulfate proteoglycans are increased during skeletal muscle regeneration: requirement of syndecan-3 for successful fiber formation. J. Cell Sci. 2004; 117: 73-84.
  39. Velleman S.G., Liu X., Eggen K.H. et al. Developmental regulation of proteoglycan synthesis and decorin expression during turkey embryonic skeletal muscle formation. Poult. Sci. 1999; 78(11): 1619-26.
  40. Ahmad S., Jan A.T., Baig M.H. et al. Matrix gla protein: an extracellular matrix protein regulates myostatin expression in the muscle developmental program. Life Sci. 2017; 172: 55-63.
  41. Rossi C.A., Flaibani M., Blaauw B. et al. In vivo tissue engineering of functional skeletal muscle by freshly isolated satellite cells embedded in a photopolymerizable hydrogel. FASEB J. 2011; 25(7): 2296-304.
  42. Vlodavsky I., Bar-Shavit R., Ishai-Michaeli R. et al. Extracellular matrix-resident basic fibroblast growth factor: implication for the control of angiogenesis. Trends Biochem. Sci. 1991; 16(7): 268-71.
  43. Ronning S.B., Pedersen M.E., Andersen P.V. et al. The combination of glycosaminoglycans and fibrous proteins improves cell proliferation and early differentiation of bovine primary skeletal muscle cells. Differentiation 2013; 86(1-2): 13-22.
  44. Lai H.Y., Yang M.J., Wen K.C. et al. Mesenchymal stem cells negatively regulate dendritic lineage commitment of umbilical-cord-blood-derived hematopoietic stem cells: an unappreciated mechanism as immunomodulators. Tissue Eng. Part A 2010; 16(9): 2987-97.
  45. Antoon R., Yeger H., Loai Y. et al. Impact of bladder-derived acellular matrix, growth factors, and extracellular matrix constituents on the survival and multipotency of marrow-derived mesenchymal stem cells. J. Biomed. Mater. Res. A 2012; 100(1): 72-83.
  46. Assis-Ribas T., Forni M.F., Winnischofer S.M.B. et al. Extracellular matrix dynamics during mesenchymal stem cells differentiation. Dev. Biol. 2018; 437(2): 63-74.
  47. Docheva D., Popov C., Mutschler W. et al. Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system. J. Cell. Mol. Med. 2007; 11(1): 21-38.
  48. Popov C., Radic T., Haasters F. et al. Integrins α2β1 and α11β1 regulate the survival of mesenchymal stem cells on collagen I. Cell Death Dis. 2011; 2: 186.
  49. Gross J., Lapiere C.M. Collagenolytic activity in amphibian tissues: a tissue culture assay. PNAS USA 1962; 48: 1014-22.
  50. Nagase H., Woessner J.F. Jr. Matrix metalloproteinases. J. Biol. Chem. 1999; 274(31): 21491-4.
  51. Wang W., Pan H., Murray K. et al. Matrix metalloproteinase-1 promotes muscle cell migration and differentiation. Am. J. Pathol. 2009; 174(2): 541-9.
  52. Zheng Z., Leng Y., Zhou C. et al. Effects of matrix metalloprotein-ase-1 on the myogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro. Biochem. Biophys. Res. Commun. 2012; 428(2): 309-14.
  53. Kar S., Subbaram S., Carrico P.M. et al. Redox-control of matrix me-talloproteinase-1: a critical link between free radicals, matrix remodeling and degenerative disease. Respir. Physiol. Neurobiol. 2010; 174(3): 299-306.
  54. Hindi S.M., Shin J., Ogura Y. et al. Matrix metalloproteinase-9 inhibition improves proliferation and engraftment of myogenic cells in dystrophic muscle of mdx mice. PLoS One 2013; 8(8): 72121.
  55. von Maltzahn J., Chang N.C., Bentzinger C.F. et al. Wnt signaling in myogenesis. Trends Cell Biol. 2012; 22(11): 602-9.
  56. Klatt A.R., Becker A.K., Neacsu C.D. et al. The matrilins: modulators of extracellular matrix assembly. Int. J. Biochem. Cell Biol. 2011; 43(3): 320-30.
  57. Deak F., Matés L., Korpos E. et al. Extracellular deposition of matri-lin-2 controls the timing of the myogenic program during muscle regeneration. J. Cell Sci. 2014; 127(15): 3240-56.
  58. Korpos É., Deák F., Kiss I. Matrilin-2, an extracellular adaptor protein, is needed for the regeneration of muscle, nerve and other tissues. Neural Regen. Res. 2015; 10(6): 866-9.
  59. Fuoco C., Salvatori M.L., Biondo A. et al. Injectable polyethylene glycol-fibrinogen hydrogel adjuvant improves survival and differentiation of transplanted mesoangioblasts in acute and chronic skeletal-muscle degeneration. Skelet. Muscle 2012; 2(1): 24.
  60. Badylak S.F., Freytes D.O., Gilbert T.W. Reprint of: Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2015; 23: 17-26.
  61. Корсаков И.Н., Самчук Д.П., Еремин И.И. и др. Тканеинженерные конструкции для восстановления скелетной мышечной ткани. Гены и Клетки 2017; 12(1): 34-7.
  62. Qazi T.H., Mooney D.J., Pumberger M. et al. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials 2015; 53: 502-21.
  63. Badylak S.F., Dziki J.L., Sicari B.M. et al. Mechanisms by which acellular biologic scaffolds promote functional skeletal muscle restoration. Biomaterials 2016; 103: 128-36.
  64. Самчук Д.П., Пулин А.А., Еремин И.И. и др. Методические подходы к созданию тканеинженерных мышечных графтов. Кремлевская медицина. Клинический вестник 2017; 2(4): 80-5.
  65. Crapo P.M., Gilbert T.W., Badylak S.F. An overview of tissue and whole organ decellularization processes. Biomaterials 2011; 32(12): 3233-43.
  66. Sicari B.M., Rubin J.P., Dearth C.L. et al. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci. Transl. Med. 2014; 6(234): 58.
  67. Fuoco C., Petrilli L.L., Cannata S. et al. Matrix scaffolding for stem cell guidance toward skeletal muscle tissue engineering. J. Orthop. Surg. Res. 2016; 11(1): 86.
  68. Yi H., Forsythe S., He Y. et al. Tissue-specific extracellular matrix promotes myogenic differentiation of human muscle progenitor cells on gelatin and heparin conjugated alginate hydrogels. Acta Biomater. 2017; 62: 222-33.
  69. Zhang X., Bendeck M.P., Simmons C.A. et al. Deriving vascular smooth muscle cells from mesenchymal stromal cells: Evolving differentiation strategies and current understanding of their mechanisms. Biomaterials 2017; 145: 9-22.
  70. Shandalov Y., Egozi D., Koffler J. et al. An engineered muscle flap for reconstruction of large soft tissue defects. PNAS USA 2014; 111(16): 6010-5.
  71. Smith C.M., Stone A.L., Parkhill R.L. et al. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng. 2004; 10(9-10): 1566-76.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies