The role of skeletal muscle tissue extracellular matrix components in myogenesis
- Authors: Stupnikova T.V1, Eremin I.I1,2, Zorin V.L1,3, Kopnin P.B1,4, Gilmutdinova I.R1,5, Saburina I.N1,6, Pulin A.A1,2,6
-
Affiliations:
- Institute of General Pathology and Pathophysiology
- JSC «Generium»
- PJSC “Human Stem Cells Institute"
- N.N. Blokhin National Medical Research Center of Oncology
- National Medical Research Center for Rehabilitation and Balneology
- Russian Medical Academy of Continuous Professional Education
- Issue: Vol 13, No 4 (2018)
- Pages: 17-23
- Section: Articles
- URL: https://genescells.ru/2313-1829/article/view/120715
- DOI: https://doi.org/10.23868/201812042
- ID: 120715
Cite item
Abstract
Full Text

About the authors
T. V Stupnikova
Institute of General Pathology and Pathophysiology
I. I Eremin
Institute of General Pathology and Pathophysiology; JSC «Generium»
V. L Zorin
Institute of General Pathology and Pathophysiology; PJSC “Human Stem Cells Institute"
P. B Kopnin
Institute of General Pathology and Pathophysiology; N.N. Blokhin National Medical Research Center of Oncology
I. R Gilmutdinova
Institute of General Pathology and Pathophysiology; National Medical Research Center for Rehabilitation and Balneology
I. N Saburina
Institute of General Pathology and Pathophysiology; Russian Medical Academy of Continuous Professional Education
A. A Pulin
Institute of General Pathology and Pathophysiology; JSC «Generium»; Russian Medical Academy of Continuous Professional Education
Email: andreypulin@gmail.com
References
- Зорин В.Л., Зорина А.И., Пулин А.А. и др. Перспективы использования клеток, обладающих миогенным потенциалом, в лечении заболеваний скелетных мышц: обзор исследований. Ч. 1. Сателлитные клетки. Патологическая физиология и экспериментальная терапия 2015; 59(2): 88-98.
- Зорин В.Л., Зорина А.И., Пулин А.А. и др. Перспективы использования стволовых клеток, обладающих миогенным потенциалом, в лечении заболеваний скелетных мышц: обзор исследований. Ч. 2. Популяции стволовых клеток мышечного и немышечного происхождения. Патологическая физиология и экспериментальная терапия 2015; 59(3): 106-17.
- Charge S.B., Rudnicki M.A. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 2004; 84: 209-38.
- Droguett R., Cabello-Verrugio C., Riquelme C. et al. Extracellular proteoglycans modify TGF-beta bio-availability attenuating its signaling during skeletal muscle differentiation. Matrix Biol. 2006; 25: 332-41.
- Kamiya N., Watanabe H., Habuchi H. et al. Versican/PG-M regulates chondrogenesis as an extracellular matrix molecular crucial for mesenchymal condensation. J. Biol. Chem. 2006; 281: 2390-400.
- Theocharis A.D., Skandalis S.S., Gialeli C. et al. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016; 97: 4-27.
- Hurd S.A., Bhatti N.M., Walker A.M. et al. Development of a biological scaffold engineered using the extracellular matrix secreted by skeletal muscle cells. Biomaterials 2015; 49: 9-17.
- Gilbert T.W., Gilbert S., Madden M. et al. Morphologic assessment of extracellular matrix scaffolds for patch tracheoplasty in a canine model. Ann. Thorac. Surg. 2008; 86(3): 967-74.
- Wang Z., Li Z., Li Z. et al. Cartilaginous extracellular matrix derived from decellularized chondrocyte sheets for the reconstruction of osteochondral defects in rabbits. Acta Biomater. 2018; 81: 129-45.
- Qureshi O.S., Bon H., Twomey B. et al. An immunofluorescence assay for extracellular matrix components highlights the role of epithelial cells in producing a stable, fibrillar extracellular matrix. Biol. Open 2017; 6(10): 1423-33.
- Badylak S.F., Freytes D.O., Gilbert T.W. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009; 5(1): 1-13.
- Engin A.B., Nikitovic D., Neagu M. et al. Mechanistic understanding of nanoparticles' interactions with extracellular matrix: the cell and immune system. Part. Fibre Toxicol. 2017; 14(1): 22.
- Krishnan P., Purushothaman K.R., Purushothaman M. et al. Enhanced neointimal fibroblast, myofibroblast content and altered extracellular matrix composition: Implications in the progression of human peripheral artery restenosis. Atherosclerosis 2016; 251: 226-33.
- Louzao-Martinez L., Vink A., Harakalova M. et al. Characteristic adaptations of the extracellular matrix in dilated cardiomyopathy. Int. J. Cardiol. 2016; 220: 634-46.
- Одинцова И. А., Данилов Р.К., Гололобов В.Г. и др. Особенности регенерационного гистогенеза при заживлении кожно-мышечных ран и костных переломов. Морфология 2016; 149(3): 153-4.
- Найденова Ю.Г. Морфологическая характеристика скелетной мышечной ткани в регенерационном гистогенезе. Дисс..канд. мед. наук. Санкт-Петербург: Военно-мед. акад., 1997.
- Volodina A.V., Pozdnyakov O.M. A comparative study of posttraumatic and prenatal angio- and myogenesis in mammals. Bull. Exp. Biol. Med. 1997; 124(4): 1025-30.
- Sicari B.M., Dziki J._., Siu B.F. et al. The promotion of a constructive macrophage phenotype by solubilized extracellular matrix. Biomaterials 2014; 35(30): 8605-12.
- Kelc R., Trapecar M., Gradisnik _. et al. Platelet-rich plasma, especially when combined with a TGF-ß inhibitor promotes proliferation, viability and myogenic differentiation of myoblasts in vitro. P_oS One 2015; 10(2): 0117302.
- Fry A.M., O'Regan _., Montgomery J. et al. EM_ proteins in microtubule regulation and human disease. Biochem. Soc. Trans. 2016; 44(5): 1281-8.
- Oskarsson T., Orend G. Stem cells and matrix. Int. J. Biochem. Cell Biol. 2016; 81(A): 165.
- Bildyug N.B., Voronkina I.V., Smagina _.V. et al. Matrix metalloproteinases in primary culture of cardiomyocytes. Biochemistry (Mosc.) 2015; 80(10): 1318-26.
- AbouIssa A., Mari W., Simman R. Clinical usage of an extracellular, collagen-rich matrix: a case series. Wounds 2015; 27(11): 313-8.
- Mongiat M., Andreuzzi E., Tarticchio G. et al. Extracellular matrix, a hard player in angiogenesis. Int. J. Mol. Sci. 2016: 17(11): 1822.
- Calve S., Odelberg S.J., Simon H.G. A transitional extracellular matrix instructs cell behavior during muscle regeneration. Dev. Biol. 2010; 44(1): 259-71.
- Frantz C., Stewart K.M., Weaver V.M. The extracellular matrix at a glance. J. Cell Sci. 2010; 123(24): 4195-200.
- Pataridis S., Eckhardt A., Mikulikovâ K. et al. Identification of collagen types in tissues using HPLC-MS/MS. J. Sep. Sci. 2008; 31(20): 3483-8.
- Heckmann L., Fiedler J., Mattes T. et al. Interactive effects of growth factors and three-dimensional scaffolds on multipotent mesenchymal stromal cells. Biotechnol. Appl. Biochem. 2008; 49(3): 185-94.
- Kroehne V., Heschel I., Schügner F. et al. Use of a novel collagen matrix with oriented pore structure for muscle cell differentiation in cell culture and in grafts. J. Cell. Mol. Med. 2008; 12(5A): 1640-8.
- Carnio S., Serena E., Rossi C.A. et al. Three-dimensional porous scaffold allows long-term wild-type cell delivery in dystrophic muscle. J. Tissue Eng. Regen. Med. 2011; 5(1): 1-10.
- Ciofani G., Genchi G.G., Liakos I. et al. Human recombinant elastin-like protein coatings for muscle cell proliferation and differentiation. Acta Biomater. 2013; 9: 5111-21.
- D’Andrea P., Scaini D., Ulloa Severino L. et al. In vitro myogenesis induced by human recombinant elastin-like proteins. Biomaterials 2015; 67: 240-53.
- Stanton M.M., Parrillo A., Thomas G.M. et al. Fibroblast extracellular matrix and adhesion on micro-textured polydimethylsiloxane (PDMS) scaffolds. J. Biomed. Mater. Res. B: Appl. Biomater. 2015; 103(4): 861-9.
- Seeger T., Hart M., Patarroyo M. et al. Mesenchymal stromal cells for sphincter regeneration: role of laminin isoforms upon myogenic differentiation. PLoS One 2015; 10(9): 0137419.
- Bushby K.M., Pollitt C., Johnson M.A. et al. Muscle pain as a prominent feature of facioscapulohumeral muscular dystrophy (FSHD): four illustrative case reports. Neuromuscul. Disord. 1998; 8(8): 574-9.
- Parker F., White K., Phillips S. et al. Promoting differentiation of cultured myoblasts using biomimetic surfaces that present alpha-laminin-2 peptides. Cytotechnology 2016; 68(5): 2159-69.
- Velleman S.G., Liu C., Coy C.S. et al. Effects of glypican-1 on turkey skeletal muscle cell proliferation, differentiation and fibroblast growth factor 2 responsiveness. Dev. Growth Differ. 2006; 48(4): 271-6.
- Casar J.C., Cabello-Verrugio C., Olguin H. et al. Heparan sulfate proteoglycans are increased during skeletal muscle regeneration: requirement of syndecan-3 for successful fiber formation. J. Cell Sci. 2004; 117: 73-84.
- Velleman S.G., Liu X., Eggen K.H. et al. Developmental regulation of proteoglycan synthesis and decorin expression during turkey embryonic skeletal muscle formation. Poult. Sci. 1999; 78(11): 1619-26.
- Ahmad S., Jan A.T., Baig M.H. et al. Matrix gla protein: an extracellular matrix protein regulates myostatin expression in the muscle developmental program. Life Sci. 2017; 172: 55-63.
- Rossi C.A., Flaibani M., Blaauw B. et al. In vivo tissue engineering of functional skeletal muscle by freshly isolated satellite cells embedded in a photopolymerizable hydrogel. FASEB J. 2011; 25(7): 2296-304.
- Vlodavsky I., Bar-Shavit R., Ishai-Michaeli R. et al. Extracellular matrix-resident basic fibroblast growth factor: implication for the control of angiogenesis. Trends Biochem. Sci. 1991; 16(7): 268-71.
- Ronning S.B., Pedersen M.E., Andersen P.V. et al. The combination of glycosaminoglycans and fibrous proteins improves cell proliferation and early differentiation of bovine primary skeletal muscle cells. Differentiation 2013; 86(1-2): 13-22.
- Lai H.Y., Yang M.J., Wen K.C. et al. Mesenchymal stem cells negatively regulate dendritic lineage commitment of umbilical-cord-blood-derived hematopoietic stem cells: an unappreciated mechanism as immunomodulators. Tissue Eng. Part A 2010; 16(9): 2987-97.
- Antoon R., Yeger H., Loai Y. et al. Impact of bladder-derived acellular matrix, growth factors, and extracellular matrix constituents on the survival and multipotency of marrow-derived mesenchymal stem cells. J. Biomed. Mater. Res. A 2012; 100(1): 72-83.
- Assis-Ribas T., Forni M.F., Winnischofer S.M.B. et al. Extracellular matrix dynamics during mesenchymal stem cells differentiation. Dev. Biol. 2018; 437(2): 63-74.
- Docheva D., Popov C., Mutschler W. et al. Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system. J. Cell. Mol. Med. 2007; 11(1): 21-38.
- Popov C., Radic T., Haasters F. et al. Integrins α2β1 and α11β1 regulate the survival of mesenchymal stem cells on collagen I. Cell Death Dis. 2011; 2: 186.
- Gross J., Lapiere C.M. Collagenolytic activity in amphibian tissues: a tissue culture assay. PNAS USA 1962; 48: 1014-22.
- Nagase H., Woessner J.F. Jr. Matrix metalloproteinases. J. Biol. Chem. 1999; 274(31): 21491-4.
- Wang W., Pan H., Murray K. et al. Matrix metalloproteinase-1 promotes muscle cell migration and differentiation. Am. J. Pathol. 2009; 174(2): 541-9.
- Zheng Z., Leng Y., Zhou C. et al. Effects of matrix metalloprotein-ase-1 on the myogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro. Biochem. Biophys. Res. Commun. 2012; 428(2): 309-14.
- Kar S., Subbaram S., Carrico P.M. et al. Redox-control of matrix me-talloproteinase-1: a critical link between free radicals, matrix remodeling and degenerative disease. Respir. Physiol. Neurobiol. 2010; 174(3): 299-306.
- Hindi S.M., Shin J., Ogura Y. et al. Matrix metalloproteinase-9 inhibition improves proliferation and engraftment of myogenic cells in dystrophic muscle of mdx mice. PLoS One 2013; 8(8): 72121.
- von Maltzahn J., Chang N.C., Bentzinger C.F. et al. Wnt signaling in myogenesis. Trends Cell Biol. 2012; 22(11): 602-9.
- Klatt A.R., Becker A.K., Neacsu C.D. et al. The matrilins: modulators of extracellular matrix assembly. Int. J. Biochem. Cell Biol. 2011; 43(3): 320-30.
- Deak F., Matés L., Korpos E. et al. Extracellular deposition of matri-lin-2 controls the timing of the myogenic program during muscle regeneration. J. Cell Sci. 2014; 127(15): 3240-56.
- Korpos É., Deák F., Kiss I. Matrilin-2, an extracellular adaptor protein, is needed for the regeneration of muscle, nerve and other tissues. Neural Regen. Res. 2015; 10(6): 866-9.
- Fuoco C., Salvatori M.L., Biondo A. et al. Injectable polyethylene glycol-fibrinogen hydrogel adjuvant improves survival and differentiation of transplanted mesoangioblasts in acute and chronic skeletal-muscle degeneration. Skelet. Muscle 2012; 2(1): 24.
- Badylak S.F., Freytes D.O., Gilbert T.W. Reprint of: Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2015; 23: 17-26.
- Корсаков И.Н., Самчук Д.П., Еремин И.И. и др. Тканеинженерные конструкции для восстановления скелетной мышечной ткани. Гены и Клетки 2017; 12(1): 34-7.
- Qazi T.H., Mooney D.J., Pumberger M. et al. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials 2015; 53: 502-21.
- Badylak S.F., Dziki J.L., Sicari B.M. et al. Mechanisms by which acellular biologic scaffolds promote functional skeletal muscle restoration. Biomaterials 2016; 103: 128-36.
- Самчук Д.П., Пулин А.А., Еремин И.И. и др. Методические подходы к созданию тканеинженерных мышечных графтов. Кремлевская медицина. Клинический вестник 2017; 2(4): 80-5.
- Crapo P.M., Gilbert T.W., Badylak S.F. An overview of tissue and whole organ decellularization processes. Biomaterials 2011; 32(12): 3233-43.
- Sicari B.M., Rubin J.P., Dearth C.L. et al. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci. Transl. Med. 2014; 6(234): 58.
- Fuoco C., Petrilli L.L., Cannata S. et al. Matrix scaffolding for stem cell guidance toward skeletal muscle tissue engineering. J. Orthop. Surg. Res. 2016; 11(1): 86.
- Yi H., Forsythe S., He Y. et al. Tissue-specific extracellular matrix promotes myogenic differentiation of human muscle progenitor cells on gelatin and heparin conjugated alginate hydrogels. Acta Biomater. 2017; 62: 222-33.
- Zhang X., Bendeck M.P., Simmons C.A. et al. Deriving vascular smooth muscle cells from mesenchymal stromal cells: Evolving differentiation strategies and current understanding of their mechanisms. Biomaterials 2017; 145: 9-22.
- Shandalov Y., Egozi D., Koffler J. et al. An engineered muscle flap for reconstruction of large soft tissue defects. PNAS USA 2014; 111(16): 6010-5.
- Smith C.M., Stone A.L., Parkhill R.L. et al. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng. 2004; 10(9-10): 1566-76.
