Peculiarities of non-coding RNA functioning in the norm and cerebral ischemia

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

To date, it has been shown that not only information RNAs, but also various types of non-coding RNA, are involved in the transcriptome reaction in ischemia. In particular, non-coding RNAs can perform important protective functions, acting as competitive endogenous RNAs. They interact with microRNA, which negatively affects the expression of many mRNAs, and neutralize their activity. The particular interest is circular RNAs, which belong to the non-coding RNAs and can most effectively perform the functions of competitive RNAs. Circular RNAs demonstrate the increased resistance to exonucleases and the predominant brain-specific expression pattern, which may indicate their particular importance in this tissue as neuroprotective agents. This review demonstrates the most recent data on the structure and features of the functioning of noncoding RNAs, which indicate the important role of circular RNAs in cell in the norm and ischemia conditions.

Full Text

Restricted Access

About the authors

I. B Filippenkov

Institute of Molecular Genetics, Russian Academy of Sciences

Email: Filippenkov@img.ras.ru

S. A Limborska

Institute of Molecular Genetics, Russian Academy of Sciences; N.I. Pirogov Russian National Research Medical University

L. V Dergunova

Institute of Molecular Genetics, Russian Academy of Sciences; N.I. Pirogov Russian National Research Medical University

References

  1. Kalaria R.N., Ballard C. Stroke and cognition. Curr. Atheroscler. Rep. 2001; 3(4): 334-9.
  2. Seshadri S., Beiser A., Kelly-Hayes M. et al. The lifetime risk of stroke: estimates from the Framingham Study. Stroke 2006; 37(2): 345-50.
  3. Mukherjee D., Patil C.G. Epidemiology and the global burden of stroke. World Neurosurg. 2011; 76(6 Suppl l): S85-90.
  4. Lakhan S.E., Kirchgessner A., Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J. Transl. Med. 2009; 7: 97.
  5. ladecola C., Ross M.E. Molecular pathology of cerebral ischemia: delayed gene expression and strategies for neuroprotection. Ann. N. Y. Acad. Sci. 1997; 835: 203-17.
  6. Wang C., Liu M., Pan Y. et al. Global gene expression profile of cerebral ischemia-reperfusion injury in rat MCAO model. Oncotarget 2017; 8(43): 74607-22.
  7. Kim J.Y., Yenari M.A. The immune modulating properties of the heat shock proteins after brain injury. Anat. Cell Biol. 2013; 46(1): 1-7.
  8. Takeda A., Onodera H., Sugimoto A. et al. Coordinated expression of messenger RNAs for nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 in the rat hippocampus following transient forebrain ischemia. Neuroscience 1993; 55(1): 23-31.
  9. Cox-Limpens K.E.M., Gavilanes A.W.D., Zimmermann L.J.I. et al. Endogenous brain protection: what the cerebral transcriptome teaches us. Brain Res. 2014; 1564: 85-100.
  10. Cox-Limpens K.E.M., Vles J.S.H., Schlechter J. et al. Fetal brain genomic reprogramming following asphyctic preconditioning. BMC Neurosci. 2013; 14: 61.
  11. Feng Z., Davis D.P., Sasik R. et al. Pathway and gene ontology based analysis of gene expression in a rat model of cerebral ischemic tolerance. Brain Res. 2007; 1177: 103-23.
  12. Saugstad J.A. Non-Coding RNAs in Stroke and Neuroprotection. Front. Neurol. 2015; 6: 50.
  13. Kaur P., Liu F., Tan J.R. et al. Non-Coding RNAs as Potential Neuro-protectants against Ischemic Brain Injury. Brain Sci. 2013; 3(1): 360-95.
  14. Salzman J., Gawad C., Wang P.L. et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 2012; 7(2): e30733.
  15. Jeck W.R., Sorrentino J., Wang K. et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19(2): 141-57.
  16. Zhang Y., Zhang X.O., Chen T. et al. Circular intronic long noncoding RNAs. Mol. Cell 2013; 51(6): 792-806.
  17. Lasda E., Parker R. Circular RNAs: diversity of form and function. RNA 2014; 20(12): 1829-42.
  18. Filippenkov I.B., Sudarkina O.Y., Limborska S.A. et al. Circular RNA of the human sphingomyelin synthase 1 gene: Multiple splice variants, evolutionary conservatism and expression in different tissues. RNA Biol. 2015; 12(9): 1030-42.
  19. Filippenkov I.B., Kalinichenko E.O., Limborska S.A. et al. Circular RNAs - one of the enigmas of the brain. Neurogenetics 2017; 18(1): 1-6.
  20. Rybak-Wolf A., Stottmeister C., Glazar P. et al. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol. Cell 2015; 58(5): 870-85.
  21. Denzler R., Agarwal V., Stefano J. et al. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 2014; 54(5): 766-76.
  22. Hansen T.B., Wiklund E.D., Bramsen J.B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 2011; 30(21): 4414-22.
  23. Hansen T.B., Jensen T.I., Clausen B.H. et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495: 384-8.
  24. Memczak S., Jens M., Elefsinioti A. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495: 333-8.
  25. Piwecka M., Glazar P., Hernandez-Miranda L.R. et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 2017; 357(6357): eaam8526.
  26. Suzuki H., Tsukahara T. A view of pre-mRNA splicing from RNase R resistant RNAs. Int. J. Mol. Sci. 2014; 15(6): 9331-42.
  27. Suzuki H., Zuo Y., Wang J. et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from premRNA splicing. Nucleic Acids Res. 2006; 34(8): e63.
  28. Guo J.U., Agarwal V., Guo H. et al. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014; 15(7): 409.
  29. Lukiw W.J. Circular RNA (circRNA) in Alzheimer’s disease (AD). Front. Genet. 2013; 4: 307.
  30. Hansen T.B., Kjems J., Damgaard C.K. Circular RNA and miR-7 in cancer. Cancer Res. 2013; 73(18): 5609-12.
  31. Lin S., Ye S., Long Y. et al. Circular RNA expression alterations are involved in OGD/R-induced neuron injury. Biochem. Biophys. Res. Commun. 2016; 471(1): 52-6.
  32. Liu C., Zhang C., Yang J. et al. Screening circular RNA expression patterns following focal cerebral ischemia in mice. Oncotarget 2017; 8(49): 86535-47.
  33. Mattick J.S., Makunin I.V. Non-coding RNA. Hum. Mol. Genet. 2006; 15 Spec No 1: R17-29.
  34. Djebali S., Davis C.A., Merkel A. et al. Landscape of transcription in human cells. Nature 2012; 489: 101-8.
  35. Derrien T., Johnson R., Bussotti G. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012; 22(9): 1775-89.
  36. St Laurent G., Shtokalo D., Tackett M.R. et al. On the importance of small changes in RNA expression. Methods 2013; 63(1): 18-24.
  37. Louro R., El-Jundi T., Nakaya H.I. et al. Conserved tissue expression signatures of intronic noncoding RNAs transcribed from human and mouse loci. Genomics 2008; 92(1): 18-25.
  38. Rearick D., Prakash A., McSweeny A. et al. Critical association of ncRNA with introns. Nucleic Acids Res. 2011; 39(6): 2357-66.
  39. Volders P.J., Helsens K., Wang X. et al. LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res. 2013; 41(Database issue): D246-51.
  40. Xie C., Yuan J., Li H. et al. NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res. 2014; 42(Database issue): D98-103.
  41. Ma L., Li A., Zou D. et al. LncRNAWiki: harnessing community knowledge in collaborative curation of human long non-coding RNAs. Nucleic Acids Res. 2015; 43(Database issue): D187-92.
  42. Gloss B.S., Dinger M.E. The specificity of long noncoding RNA expression. Biochim. Biophys. Acta 2016; 1859(1): 16-22.
  43. Mercer T.R., Dinger M.E., Sunkin S.M. et al. Specific expression of long noncoding RNAs in the mouse brain. PNAS USA 2008; 105(2): 716-21.
  44. Cabili M.N., Trapnell C., Goff L. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011; 25(18): 1915-27.
  45. Wilczynska A., Bushell M. The complexity of miRNA-mediated repression. Cell Death Differ. 2015; 22(1): 22-33.
  46. Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136(2): 215-33.
  47. Tay Y., Kats L., Salmena L. et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 2011; 147(2): 344-57.
  48. Broderick J.A., Zamore P.D. Competitive endogenous RNAs cannot alter microRNA function in vivo. Mol. Cell 2014; 54(5): 711-3.
  49. Cheng E., Lin H. Repressing the repressor: a lincRNA as a MicroRNA sponge in embryonic stem cell self-renewal. Dev. Cell 2013; 25(1): 1-2.
  50. Poliseno L., Salmena L., Zhang J. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010; 465: 1033-8.
  51. Li Z., Huang C., Bao C. et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 2015; 22(3): 256-64.
  52. Chen B.J., Yang B., Janitz M. Region-specific expression of circular RNAs in the mouse brain. Neurosci. Lett. 2017; 666: 44-7.
  53. You X., Vlatkovic I., Babic A. et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat. Neurosci. 2015; 18(4): 603-10.
  54. Zhang Y., Xue W., Li X. et al. The Biogenesis of Nascent Circular RNAs. Cell Rep. 2016; 15(3): 611-24.
  55. Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 2009; 3: 31.
  56. Daniel C., Silberberg G., Behm M. et al. Alu elements shape the primate transcriptome by cis-regulation of RNA editing. Genome Biol. 2014; 15(2): R28.
  57. Van der Luit A.H., Budde M., Zerp S. et al. Resistance to alkyllysophospholipid-induced apoptosis due to downregulated sphingomyelin synthase 1 expression with consequent sphingomyelin- and cholesterol-deficien-cy in lipid rafts. Biochem. J. 2007; 401(2): 541-9.
  58. Subathra M., Qureshi A., Luberto C. Sphingomyelin synthases regulate protein trafficking and secretion. PLoS One 2011; 6(9): e23644.
  59. Shakor A.B., Taniguchi M., Kitatani K. et al. Sphingomyelin synthase 1-generated sphingomyelin plays an important role in transferrin trafficking and cell proliferation. J. Biol. Chem. 2011; 286(41): 36053-62.
  60. Chen Y., Li C., Tan C. et al. Circular RNAs: a new frontier in the study of human diseases. J. Med. Genet. 2016; 53(6): 359-65.
  61. Saba R., Störchel P.H., Aksoy-Aksel A. et al. Dopamine-regulated microRNA MiR-181a controls GluA2 surface expression in hippocampal neurons. Mol. Cell. Biol. 2012; 32(3): 619-32.
  62. Sepramaniam S., Armugam A., Lim K.Y. et al. MicroRNA 320a functions as a novel endogenous modulator of aquaporins 1 and 4 as well as a potential therapeutic target in cerebral ischemia. J. Biol. Chem. 2010; 285(38): 29223-30.
  63. Kokaia Z., Zhao Q., Kokaia M. et al. Regulation of Brain-Derived Neurotrophic Factor Gene Expression after Transient Middle Cerebral Artery Occlusion with and without Brain Damage. Exp. Neurol. 1995; 136(1): 73-88.
  64. Kawashima H., Numakawa T., Kumamaru E. et al. Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. Neuroscience 2010; 165(4): 1301-11.
  65. Li Z., Li J., Tang N. Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression. Neuroscience 2017; 354: 1-10.
  66. Xing G., Luo Z., Zhong C. et al. Influence of miR-155 on Cell Apoptosis in Rats with Ischemic Stroke: Role of the Ras Homolog Enriched in Brain (Rheb)/mTOR Pathway. Med. Sci. Monit. 2016; 22: 5141-53.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies