Capacity of bone marrow granylocyte and macrophage precursors in mice of different strains for in vitro colony formation under changed thymuline level in the organism and cell cultures



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Thymiline/thymic serum factor is a highly active thymic hormone, which increases the ability of progenitors and mature T-lymphocytes to produce factors that affect hematopoiesis. The present experiments were undertaken to investigate the linear differences in the number and type of bone marrow colonies formed by the granulocyte and macrophage precursors under changed thymuline level in the organism and cell cultures. Young CBA/Ca (genotype H-2k) and FVB/N (genotype H-2q) male mice were the object of our research. In the intact, sham-operated and thymectomized mice, blood thymuline level, number of СD4+-, СD8+-Т-lymphocytes and progenitor cells for granulocyte-macrophage colonies were measured in the bone marrow. Also, changes of percent ratios of granulocytic, mixed and macrophagal blood-forming colonies under influence of thymuline in vitro and phagocytic activities of macrophages in the spleen were registered. The number of progenitor cells for granulocyte-macrophage colonies was found to be higher (p<0.05) in sham-operated versus intact mice of both strains. Thymectomy led to further increase of their number in СВА/Са mice and decrease in FVB/N mice. After thymectomy, СD4+-Т cells number decreased in СВА/Са mice whereas СD8+ Т cells in FVB/N mice. Blood thymuline level decreased after sham operation (p<0.05) only in СВА/Са mice. The activity of macrophages decreased essentially after thymectomy in СВА/Са mice and after sham operation in FVB/N mice. In sham-operated СВА/ Са mice, the ratio of blood-forming colonies was changed: the number of macrophagal colonies increased 5.8-fold compared to intact mice. This effect leveled in thymectomized mice. We observed a dose-dependent decrease in the number of macrophagal colonies under thymuline effect in vitro. In FVB/N mice the number of macrophagal colonies decreased significantly after thymectomy. However it increased under thymuline influence in vitro. Thus, the linear differences in capacity of bone marrow blood-forming cells to form colonies and be differentiated under conditions of changed functioning of the thymus can be largely linked with the specifics of its intra- and inter-systemic relationships.

Full Text

Restricted Access

About the authors

I. F Labunets

State Institute of Genetic and Regenerative Medicine, NAMS of Ukraine

Email: irina_labunets@ukr.net

A. E Rodnichenko

State Institute of Genetic and Regenerative Medicine, NAMS of Ukraine

R. G Vasyliev

State Institute of Genetic and Regenerative Medicine, NAMS of Ukraine

References

  1. Felfly H., Haddad G.G. Hematopoietic stem cells: potential new applications for translational medicine. J. Stem Cells 2014; 9(3): 163-97.
  2. Hosing C. Hematopoietic stem cell mobilization with G-CSF. Methods Mol. Biol. 2012; 904: 37-47.
  3. Ройт А., Бростофф Д., Мейл Д. Иммунология, пер. с англ. Москва: Мир; 2000.
  4. Geiger H., Rudolf K.L. Aging in the lympho-hematopoietic stem cell compartment. Trends Immunol. 2009; 30(7): 360-5.
  5. Kalinkovich A., Spiegel A., Shivtiel Sh. et al. Blood-forming stem cells are nervous:direct and indirect regulation of immature human CD34+ cells by the nervous system. Brain Behav. Immun. 2009; 23: 1059-65.
  6. Mendelson A., Frenette P.S. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat. Med. 2014; 20(8): 833-46.
  7. Гриневич Ю.А., Чеботарев В.Ф., редакторы. Иммунобиология гормонов тимуса. Киев: Здоровье; 1989.
  8. Ярилин А.А., Пинчук В.Г., Гриневич Ю.А. Структура тимуса и дифференцировка Т-лимфоцитов. Киев: Наукова думка; 1991.
  9. Monteiro J.P., Benjamin A., Costa E.S. et al. Normal hematopoiesis is maintained by activated bone marrow CD4+ T-cells. Blood 2005; 105(4): 1484-91.
  10. Di Rosa F. T-lymphocyte interaction with stromal, bone and hematopoietic cells in the bone marrow. Cell Biol. 2009; 87(1): 20-9.
  11. Хавинсон В.Х., Морозов В.Г. Пептиды эпифиза и тимуса в регуляции старения. СПб: ИКФ «Фолиант»; 2001.
  12. Лабунец И.Ф. Эпифиз и ритмы функций иммунной системы при старении. Экспериментальное исследование. Saarbrucken: LAP LAMBERT Academic Publishing; 2012.
  13. Анисимов В.Н. Молекулярные и физиологические механизмы старения. 2-е изд. Санкт-Петербург: Наука; 2008.
  14. Labunets I.F. The peculiarities of age-related changes in the cellular composition of bone marrow, pineal melatonin-forming function, and thymus endocrine function in mice of different strains. Adv. Gerontol. 2014; 4(2): 134-9.
  15. Белоусов Ю.Б., редактор. Этическая экспертиза биомедицинских исследований. Практические рекомендации. Москва: Российское общество клинических исследователей; 2005.
  16. Machler J.F., Stokes W., Mann P.C. et al. Spontaneous lesions in aging FVB/N mice. Toxicol. Pathol. 1996; 24(6): 710-6.
  17. Bach J.F., Bach M.A., Blanot D. et al. Thymic serum factor (FTS). Bull. Inst. Pasteur (Paris) 1978; 76: 325-98.
  18. Bradley T.R., Metcalf D. The growth of mouse bone marrow cells in vitro. Aust. J. Exp. Biol. Med. Sci. 1966; 44: 286-300.
  19. Чертков И.Л., Фриденштейн А.Я. Клеточные основы кроветворения. Москва: Медицина; 1977.
  20. Ярилин А.А. Основы иммунологии. Москва: Медицина; 1999.
  21. Стефанов О.В., редактор. Доклинические исследования лекарственных средств (методические рекомендации). Киев: Авиценна; 2001.
  22. Лакин Г.Ф. Биометрия. Москва: Высшая школа; 1990.
  23. Корнева Е.А., Шхинек Э.К. Гормоны и иммунная система. Ленинград: Наука; 1988.
  24. Zhao E., Xu H., Wang L. et al. Bone marrow and the control of immunity. Cell. Mol. Immunol. 2012; 9: 11-9.
  25. Лабунец И.Ф., Кучук О.В., Родниченко А.Е. и др. Генетические особенности функционального состояния иммунной системы у интактных мышей и в условиях стрессовых влияний. В: Германов В.Г., редактор. Актуальные проблемы акушерства и гинекологии, клинической иммунологии и медицинской генетики. Сборник научных трудов. Киев-Луганск: Издательство ЛугДМУ; 2010; Выпуск 19. с. 271-81.
  26. Pardo J., Schwerdt J.I., Reggiani P.C. et al. Physiology, molecular biology and therapeutic potential of the thymic peptide thymulin. Physiol. Mini Reviews 2012; 6(1): 2-12.
  27. Peister A., Mellad J.A., Larson B.L. et al. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 2004; 103: 1662-8.
  28. Лабунец И.Ф. Роль эпифиза в регуляции биоритмов функций иммунной системы при старении [диссертация]. Киев: Институт геронтологии им. Д.Ф. Чеботарева НАМН Украины; 2012.
  29. Savino W., Mendes-da-Cruz A., Lepletier A. et al. Hormonal control of T-cell development in health and disease. Nature Reviews Endocrinology 2016; 12: 77-89.
  30. Saintz R.M., Mayo J.C., Reiter R.J. et al. Melatonin regulates glucocorticoids receptor an answer to its antiapoptotic action in thymus. FASEB J. 1999; 13(12): 1547-56.
  31. Сarrilo-Vico A., Lardone P.J., Alvarez-Sanchez N. et al. Melatonin: Buffering the Immune System. Int. J. Mol. Sci. 2013; 14: 8638-83.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies