Comparative analysis of efficiency of direct and cell-mediated gene therapy of rats with contusion spinal cord injury
- Authors: Izmailov A.A1, Sokolov M.E1, Bashirov F.V1, Fadeev F.O1, Markosyan V.A1, Garifulin R.R1, Lisyukov A.N1, Kuznetsov M.S1, Islamov R.R1
-
Affiliations:
- Kazan State Medical University
- Issue: Vol 12, No 4 (2017)
- Pages: 53-59
- Section: Articles
- URL: https://genescells.ru/2313-1829/article/view/120665
- DOI: https://doi.org/10.23868/201707030
- ID: 120665
Cite item
Abstract
Full Text

About the authors
A. A Izmailov
Kazan State Medical University
M. E Sokolov
Kazan State Medical University
F. V Bashirov
Kazan State Medical University
F. O Fadeev
Kazan State Medical University
V. A Markosyan
Kazan State Medical University
R. R Garifulin
Kazan State Medical University
A. N Lisyukov
Kazan State Medical University
M. S Kuznetsov
Kazan State Medical University
R. R Islamov
Kazan State Medical University
References
- Bahmad H., Hadadeh O., Chamaa F. et al. Modeling Human Neurological and Neurodegenerative Diseases: From Induced Pluripotent Stem Cells to Neuronal Differentiation and Its Applications in Neurotrauma. Front. Mol. Neurosci. 2017; 10: 50; doi: 10.3389/ fnmol.2017.00050.
- Muheremu A., Peng J., Ao Q. Stem cell based therapies for spinal cord injury. Tissue Cell 2016; 48(4): 328-33.
- Kabu S., Gao Y., Kwon B. et al. Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury. J. Control. Release 2015; 219: 141-54.
- Venkatesh I., Blackmore M.G. Selecting optimal combinations of transcription factors to promote axon regeneration: Why mechanisms matter. Neurosci. Lett. 2016; 652: 64-73.
- An N., Xu H., Gao W. et al. Direct Conversion of Somatic Cells into Induced Neurons. Mol. Neurobiol. 2016; doi: 10.1007/s12035-016-0350-0.
- Seidlits C.M., Walthers C. Gene Delivery Strategies to Promote Spinal Cord Repair. Biomark. Insights 2015; 10: 11; DOI: 10.4137/ BMI.S20063.
- Momin E.N., Mohyeldin A., Zaidi H. et al. Mesenchymal stem cells: new approaches for the treatment of neurological diseases. Curr. Stem Cell Res. Ther. 2010; 5(4): 326-44.
- Wang Y., Lu X., Chen K. et al. Immunotherapy strategies for spinal cord injury. Curr. Pharm. Biotechnol. 2015; 16(6): 492-05.
- Main B.S., Minter M.R. Microbial Immuno-Communication in Neurodegenerative Diseases. Front. Neurosci. 2017; 11: 151; doi: 10.3389/fnins.2017.00151.
- Исламов Р.Р., Ризванов А.А., Черенкова Е.Е. и др. Исследование экспрессии рекомбинантных терапевтических генов в мононуклеарных клетках крови пуповины, трансдуцированных тремя аденовирусными векторами, кодирующими нейротрофические факторы GDNF и VEGF и молекулу нейрональной адгезии NCAM. Гены и Клетки 2014; 9(3): 204-8.
- Islamov R.R., Rizvanov A.A., Fedotova V.Y. et al. Tandem delivery of multiple therapeutic genes using umbilical cord blood cells improves symptomatic outcomes in ALS. Mol. Neurobiol. 2017; 54(6): 4756-63.
- Sebastia J., Kieran D., Breen B. et al. Angiogenin protects motoneurons against hypoxic injury. Cell Death Differ. 2009; 16(9): 1238-47.
- Исмаилов Ш.М., Барыкова Ю.А., Шмаров М.М и др. Экспериментальный подход к генной терапии болезни двигательного нейрона с использованием генов гипоксия-индуцибельных факторов. Генетига 2014; 50(5): 591-601.
- Povysheva T.V., Shmarov M.M., Logunov D.Y. et al. A Postspinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG. J. Neurosurg.: Spine 2017; 27(1): 105-15.
- Islamov R.R., Rizvanov A.A., Mukhamedyarov M.A. et al. Symptomatic improvement, increased life-span and sustained cell homing in amyotrophic lateral sclerosis after transplantation of human umbilical cord blood cells genetically modified with adeno-viral vectors expressing a neuro-protective factor and a neural cell adhesion molecule. Curr. Gene Ther. 2015; 15(3): 266-76.
- Mukhamedshina Y.O., Garanina E.E., Masgutova G.A. et al. Assessment of glial scar, tissue sparing, behavioral recovery and axonal regeneration following acute transplantation of genetically modified human umbilical cord blood cells in a rat model of spinal cord contusion. PLoS One 2016; 11(3): e0151745.
- Courtine G., Song B., Roy R. et al. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord. Nat. Med. 2008; 14(1): 69-74.
- Harvie D.S., Smith R., Hunter E.V. et al. Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion. Peer J. 2017; 5: e3023.
- Niu J., Li C., Wu H. et al. Propidium iodide (PI) stains Nissl bodies and may serve as a quick marker for total neuronal cell count. Acta Histochem. 2015; 117(2): 182-7.
- Солопова И.А., Селионов В.А. Влияние вибрации на возбудимость спинальных а-мотонейронов в статических условиях и во время вызванного шагания у человека. Физиология человека 2012; 38(2): 57-65.
- Ноздрачев А.Д., Поляков Е.Л. Анатомия крысы. Санкт-Петербург: Издательство "ЛАНЬ"; 2001.
- Song Z., Wang Z., Shen J. et al. Nerve growth factor delivery by ultrasound-mediated nanobubble destruction as a treatment for acute spinal cord injury in rats. Int. J. Nanomedicine 2017; 12: 1717-29.
- Jones L.L., Oudega M., Bunge M.B. et al. Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. J. Physiol. 2001; 533(1): 83-9.
- Zhu H., Poon W., Liu Y. et al. Phase III Clinical Trial Assessing Safety and Efficacy of Umbilical Cord Blood Mononuclear Cell Transplant Therapy of Chronic Complete Spinal Cord Injury. Cell Transplant. 2016; 25(11): 1925-43.
- Ichim T.E., Solano F., Lara F. et al. Feasibility of combination allogeneic stem cell therapy for spinal cord injury: a case report. Int. Arch. Med. 2010; 3(1): 30.
- Liu J., Han D., Wang, Z. Clinical analysis of the treatment of spinal cord injury with umbilical cord mesenchymal stem cells. Cytotherapy 2013; 15(2): 185-91.
- Сафиуллов З.З., Гаранина Е.Е., Измайлов А.А. и др. Адресная миграция и выживание генетически модифицированных мононуклеарных клеток крови пуповины человека после трансплантации G93A мышам с моделью бокового амиотрофического склероза. Гены и клетки 2015; 10(4): 86-9.
- Basso D.M., Beattie M.S., Bresnahan J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma 1995; 12(1): 1-21.
- Liu Y., Figley S., Spratt S.K. et al. An engineered transcription factor which activates VEGF-A enhances recovery after spinal cord injury. Neurobiol. Dis. 2010; 37(2): 384-93.
- Figley S.A., Liu Y., Karadimas S.K. et al. Delayed administration of a bio-engineered zinc-finger VEGF-A gene therapy is neuroprotective and attenuates allodynia following traumatic spinal cord injury. PLoS One 2014; 9(5): e96137.
- Mukhamedshina Y.O., Shaymardanova G.F., Garanina Е.Е. et al. Adenoviral vector carrying glial cell-derived neurotrophic factor for direct gene therapy in comparison with human umbilical cord blood cell-mediated therapy of spinal cord injury in rat. Spinal Cord 2016; 54(5): 347-59.
