Somatic cells reprogramming and genome editing for stargardt disease modeling for investigation and treatment
- Authors: Lebedin M.Y1, Mayorova K.S1, Maximov V.V2, Bogomazova A.N1, Lagarkova M.A1, Kiselev S.L1
-
Affiliations:
- N.I. Vavilov Institute of General Genetics
- Research Center “Kurchatov Institute"
- Issue: Vol 12, No 2 (2017)
- Pages: 62-70
- Section: Articles
- URL: https://genescells.ru/2313-1829/article/view/120657
- DOI: https://doi.org/10.23868/201707021
Cite item
Full Text
Abstract
Full Text

About the authors
M. Y Lebedin
N.I. Vavilov Institute of General Genetics
K. S Mayorova
N.I. Vavilov Institute of General Genetics
V. V Maximov
Research Center “Kurchatov Institute"
A. N Bogomazova
N.I. Vavilov Institute of General Genetics
M. A Lagarkova
N.I. Vavilov Institute of General Genetics
S. L Kiselev
N.I. Vavilov Institute of General Genetics
Email: kiselev@vigg.ru
References
- Allikmets R., Singh N., Sun H. et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat. Genet. 1997; 15(3): 236-46.
- Nishiguchi K.M., Sandberg M.A., Gorji N. et al. Cone cGMP-gated channel mutations and clinical findings in patients with achromatopsia, macular degeneration, and other hereditary cone diseases. Hum.Mutat. 2005; 25(3): 248-58.
- Zhang K., Kniazeva M., Han M. et al. A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat. Genet. 2001; 27(1): 89-93.
- Edwards A.O., Donoso L.A., Ritter R. 3rd. A novel gene for autosomal dominant Stargardt-like macular dystrophy with homology to the SUR4 protein family. Invest.Ophthalmol. Vis. Sci. 2001; 42(11): 2652-63.
- Yang Z., Chen Y., Lillo C. et al. Mutant prominin 1 found in patients with macular degeneration disrupts photoreceptor disk morphogenesis in mice. J.Clin. Invest. 2008; 118(8): 2908-16.
- Stuck M.W., Conley S.M., Naash M.I. RDS Functional Domains and Dysfunction in Disease. Adv. Exp. Med. Biol. 2016;854:217-22.
- Connell G.J., Molday R.S. Molecular cloning, primary structure, and orientation of the vertebrate photoreceptor cell protein peripherin in the rod outer segment disk membrane. Biochemistry 1990; 29(19):4691-8.
- Stuck M.W., Conley S.M., Naash M.J. Retinal Degeneration Slow (RDS) Glycosylation Plays a Role in Cone Function and in the Regulation of RDS^ROM-1 Protein Complex Formation. J. Biol. Chem. 2015; 290(46):27901-13.
- Schwartz S.D., Tan G., Hosseini H. et al. Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 Years. Invest.Ophthalmol. Vis. Sci. 2016;57(5):1-9.
- Mandai M., Watanabe A., Kurimoto Y. et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N. Engl. J. Med. 2017;376(11):1038-46.
- Честков И.В., Васильева Е.А., Иллариошкин С.Н. и др. Система для изучения бокового амиотрофического склероза на основе пациент-специфичных индуцированных плюрипотентных стволовых клеток ActaNaturae 2014; 6(1): 58-65.
- Лагарькова М.А., Шилов A.P, Губанова Н.И. и др. Гистогенез эмбриональных стволовых клеток человека invitro в компоненты сетчатки глаза. Клеточные технологии в биологии и медицине 2011; 4: 203-6.
- Shutova M.V., Surdina A.V., Ischenko D.S. et al. Anintegrati veanalysisofreprogramminginhuman isogenic system identified a clone selection criterion. Cell Cycle 2016;15(7):986-97.
- Eiraku M., Takata N., Ishibashi H. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 2011; 472(7341): 51-6.
- Vora S., Tuttle M., Cheng J. et al. Next stop for the CRISPR revolution: RNA-guided epigenetic regulators. FEBS J. 2016; 283(17):3181-93.
- Cowan P.J. The use of CRISPR/Cas associated technologies for cell transplant applications. Curr.Opin. Organ Transplant. 2016; 5:461-6.
- Xie F., Ye L., Chang J.C.et al. Seamless gene correction of ß-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014;24(9):1526-33.
- Nakazawa M., Naoi N., Wada Y.et al. Autosomal dominant cone-rod dystrophy associated with a Val200Glu mutation of the peripherin/RDS gene. Retina 1996; 16(5): 405-10.
- vanSoest S., Westerveld A., de Jong P.T. et al. Retinitis pigmentosa: defined from a molecular point of view. Surv.Ophthalmol. 1999; 43(4): 321-34.
- Максимов В.В., Лагарькова М.А., Киселев С.Л. Генная и клеточная терапия заболеваний сетчатки глаза. Клеточная трансплантология и тканевая инженерия 2012, 7(3):12-20.
- Богомазова А.Н., Васина Е.М., Киселев С.Л.и др. Генетическое репрограммирование клеток: новая технология для фундаментальных исследований и практического использования. Генетика 2015;51(4): 466-78.
- Singh R., Shen W., Kuai D. et al. iPS cell modeling of Bestdisease: insights into the pathophysiology of an inherited macular degeneration. Hum. Mol. Genet. 2013;22(3):593-607.
- Singh R., Kuai D., Guziewicz K.E.et al. Pharmacological modulation of photoreceptor outer segment degradation in a human iPS cell model of inherited macular degeneration. Mol. Ther. 2015;23(11):1700-11.
- Bezprozvanny I., Kiselev S.L. Neurons from skin mimic brain holes. Oncotarget 2017;8(6):8997-8.
- Nekrasov E.D., Vigont V.A., Klyushnikov S.A.et al. Manifestation of Huntington's disease pathology in human induced pluripotent stem cell-derived neurons. Mol.Neurodegener. 2016;11(1):27-32.
- Shi Y., Inoue H., Wu J.C.et al.Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug Discov. 2017;16(2):115-30.
- Gasiunas G., Barrangou R., Horvath P. et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci.2012; 109:2579-86.
- Cabral T., DiCarlo J.E., Justus S.et al. CRISPR applications in ophthalmologic genome surgery. Curr.Opin.Ophthalmol. 2017;28(3):252-9.
