The prospects of creating a pacemaker cardiac tissue using modern technologies
- Authors: Bayramova S.A1, Strelnikov A.G1, Romanov A.B1, Yakubov A.A1, Losik D.V1, Pavlova S.V2, Agladze K.I3, Pokushalov E.A1
-
Affiliations:
- E.N. Meshalkin Siberian Federal Biomedical Research Center
- Institute of Cytology and Genetics of Siberian Branch of the RAS
- Moscow Institute of Physics and Technology (State University)
- Issue: Vol 12, No 2 (2017)
- Pages: 29-36
- Section: Articles
- URL: https://genescells.ru/2313-1829/article/view/120642
- DOI: https://doi.org/10.23868/201707020
- ID: 120642
Cite item
Abstract
Full Text

About the authors
S. A Bayramova
E.N. Meshalkin Siberian Federal Biomedical Research Center
A. G Strelnikov
E.N. Meshalkin Siberian Federal Biomedical Research Center
A. B Romanov
E.N. Meshalkin Siberian Federal Biomedical Research Center
A. A Yakubov
E.N. Meshalkin Siberian Federal Biomedical Research Center
D. V Losik
E.N. Meshalkin Siberian Federal Biomedical Research Center
S. V Pavlova
Institute of Cytology and Genetics of Siberian Branch of the RAS
K. I Agladze
Moscow Institute of Physics and Technology (State University)
E. A Pokushalov
E.N. Meshalkin Siberian Federal Biomedical Research Center
References
- Adams R. Cases of diseases of the heart, accompanied with pathological observations. Hosp.Rep., Dublin; 1827.
- Stokes W. Observations on some cases of permanently slow pulse. Dublin Q. J. Med. Sci., 1846; 2: 73-85.
- Keith A., Flack M. The form and nature of the muscular connections between the primary divisions of the vertebrate heart. J. Anat. Physiol., 1907; 41: 172-89.
- Lewis T., Oppenheimer B.S., Oppenheimer A. The site of origin of the mammalian heart-beat: the pacemaker in the dog. Heart 1910; 2: 147-69.
- His W. Die Tätigkeit des embryonalenHerzens und derenBedeutungfür die Lehre von der Herzbewegungbeim Erwachsenen Title. Arb. Med. Klin. Leipzig 1893; 14-49.
- Tawara S., Fischer V. Das Reizleitungs system des Säugetierherzens-Einenatomisch pathlogische Studieüber das Atrioventrikularbündel und die Purkinjeschen Fäden. Jena, Germany; 1906.
- McWilliam J.A. Electrical stimulation of the heart in man. Br. Med. J. 1889; 1: 348-50.
- Bigelow W.G., Callaghan J.C., Hopps J.A. General hypothermia for experimental intracardiac surgery: the use of electrophrenic respirations, an artificial pacemaker for cardiac standstill, and radiofrequency rewarming in general hypothermia. Transactions of the Meeting of the American Surgical Association1950; 68: 211-9.
- Zoll P.M. Resuscitation of the heart in ventricular standstill by external electric stimulation. N. Engl. J. Med. 1952; 247(20): 768-71.
- Jeffrey K. The invention and reinvention of cardiac pacing. Cardiol. Clin. 1992; 10: 561-71.
- Lidwell M.C. Cardiac disease in relation to anaesthesia. In: Proceedings of the Third SessionofAustralasian Medical Congress(British Medical Association); 1929 Sep 2-7; Sydney, Australia;1929. p.160.
- Мареев Ю.В. Модуляция сердечной сократимости влечении пациентов с хронической сердечной недостаточностью. Патология кровообращения и кардиохирургия 2014; 18(4): 158-63.
- Alt E., Matula M., Theres H. et al. The basis for activity controlled rate variable cardiac pacemakers: an analysis of mechanical forces on the human body induced by exercise and environment. Pacing Clin. Electrophysiol. 1989; 12: 1667-80.
- Стрельников А.Г., Якубов А.А., Сергеевичев Д.С. идр. Метод эндокардиальной инъекции ботулотоксина в ганглионарные сплетения автономной нервной системы сердца в целях снижения уязвимости к фибрилляции предсердий. Патология кровообращения и кардиохирургия 2015; 19(4): 99-107.
- Rosen M.R. 15th annual GordonK. Moe Lecture. Heart Rhythm 2005; 2(4): 418-28.
- Rosen M.R., Brink P.R., Cohen I.S. et al. Genes, stem cells and biological pacemakers. Cardiovasc. Res. 2004; 64(1): 12-23.
- Kashiwakura Y., Cho H.C., Barth A.S. et al. Gene transfer of a synthetic pacemaker channel into the heart: a novel strategy for biological pacing. Circulation 2006; 114(16): 1682-6.
- Kehat I., Khimovich L., Caspi O. et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol. 2004; 22(10): 1282-9.
- Lakatta E.G., Maltsev V.A., Vinogradova T.M. A Coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart's pacemaker. Circ. Res. 2010; 106(4): 659-73.
- Yaniv Y., Ahmet I., Liu J. et al. Synchronization of sinoatrial node pacemaker cell clocks and its autonomic modulation impart complexity to heart beating intervals. Heart Rhythm2014; 11(7): 1210-9.
- Yaniv Y., Lakatta E.G., Maltsev V.A. From two competing oscillators to one coupled-clock pacemaker cell system. Front. Physiol. 2015; 6(FEB): 1-8.
- Yaniv Y., Spurgeon H.A., Lyashkov A.E. et al. Crosstalk between mitochondrial and sarcoplasmic reticulum Ca2+ cycling modulates cardiac pacemaker cell automaticity. PLoS One 2012; 7(5): e37582.
- Maltsev V.A., Yaniv Y., Maltsev A.V. et al. Modern Perspectives on Numerical Modeling of Cardiac Pacemaker Cell. J. Pharmacol. Sci. 2014; 125(1): 6-38.
- Zhang X.H., Wei H., Saric T. et al. Regionally diverse mitochondrial calcium signaling regulates spontaneous pacing in developing cardiomyocytes. Cell Calcium 2015; 57t5-6): 321-36.
- Morad M., Zhang X.N. Mechanisms of spontaneous pacing: SA-nodal cells, neonatal cardiomyocytes, and human Stem cell derived cardiomyocytes. Can. J. Physiol. Pharmacol. 2017; 1-29.
- Qu J., Barbuti A., Protas L. et al. HCN2 overexpression in newborn and adult ventricular myocytes: distinct effects on gating and excitability. Circ. Res. 2001; 89(1): E8-14.
- Miake J., Marban E., Nuss H.B. Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. J. Clin. Invest. 2003; 111(10): 1529-36.
- Edelberg J.M., Aird W.C., Rosenberg R.D. Enhancement of murine cardiac chronotropy by the molecular transfer of the human 2 adrenergic receptor cDnA. J. Clin. Invest. 1998; 101(2): 337-43.
- Christoffels V.M., Smits G.J., Kispert A. et al. Development of the pacemaker tissues of the heart. Circ. Res. 2010; 106(2): 240-54.
- Vedantham V. New Approaches to Biological Pacemakers: Links to Sinoatrial Node Development. Trends Mol. Med. 2015; 21(12): 749-61.
- Ye W., Song Y., Huang Z. et al. Genetic regulation of sinoatrial node development and pacemaker program in the venous pole. J. Cardiovasc. Dev. Dis. 2015; 2(4): 282-98.
- Burkhard S., Eif V., Garric L. et al.On the Evolution of the cardiac pacemaker.J. Cardiovasc. Dev. Dis. 2017; 4(2): 4.
- Weerd J.H., Christoffels V.M. The formation and function of the cardiac conduction system. Development 2016; 143(2): 197-210.
- Kapoor N., Liang W., Marban E. et al. Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat. Biotechnol. 2012; 31(1): 54-62.
- Brand T. Tbx18 and the generation of a biological pacemaker. Are we there yet? J. Mol. Cell. Cardiol.2016; 97: 263-5.
- Greulich F., Trowe M.O., Leffler A. et al. Misexpression of Tbx18 in cardiac chambers of fetal mice interferes with chamber-specific developmental programs but does not induce a pacemaker-like gene signature. J. Mol. Cell. Cardiol. 2016; 97: 140-9.
- Yang M., Zhang G., Wang T. et al. TBX18 gene induces adipose-derived stem cells to differentiate into pacemaker-like cells in the myocardial microenvironment. Int. J. Mol. Med. 2016; 38(5): 1403-10.
- Bakker M.L., Boink G.J., Boukens B.G. et al. T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemakerlike cells. Cardiovasc. Res. 2012; 94(3): 439-49.
- Hu Y.F., Dawkins J.F., Cho H.C. et al. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block. Sci. Transl. Med. 2014; 6(245): 245-94.
- Ye W., Wang J., Song Y. et al. A common Shox2-Nkx2-5 antagonistic mechanism primes the pacemaking cell fate in the pulmonary vein myocardium and sinoatrial node. Development 2015; 142: 2521-32.
- Espinoza-Lewis R.A., Yu L., He F. et al. Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5. Dev. Biol. 2009; 327(2): 376-85.
- Burridge P.W., Matsa E., Shukla P. et al. Chemically defined generation of human cardiomyocytes. Nat. Methods 2014; 11(8): 855-60.
- LianXiaojun S.P., Bao1 X., Zilberter M. et al. Chemically defined albumin-free human cardiomyocyte generation. Nat. Methods 2015; 12(7): 595-6.
- Protze S.I., Liu J., Nussinovitch U. et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat. Biotechnol. 2017; 35(1): 55-68.
- lonta V., Liang W., Kim E.et al. SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells, improving biological pacing ability. Stem Cell Reports 2015; 4(1): 129-42.
- Saito Y., Nakamura K., Yoshida M. et al. Enhancement of spontaneous activity by hcn4 overexpression in mouse embryonic stem cell-derived cardiomyocytes - a possible biological pacemaker. PLoS One 2015; 10(9): 1-16.
- Du D.T.M., Hellen N., Kane C. et al. Action potential morphology of human induced pluripotent stem cell-derived cardiomyocytes does not predict cardiac chamber specificity and is dependent on cell density. Biophys. J. 2015; 108(1): 1-4.
- Isenberg W.J.Y. Building structure into engineered tissues. Mater. Today 2006; 12(9): 54-60.
- Vacanti C.A. History of tissue engineering and a glimpse into its future. Tissue Eng. 2006; 12(5): 1137-42.
- Orlova Y., Magome N., Liu L. et al.Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue. Biomaterials 2011; 32(24): 5615-24.
- Boink G.J., Christoffels V.M., Robinson R.B. et al. The past, present, and future of pacemaker therapies. TrendsCardiovasc. Med. 2015; 25(8): 661-73.
