The prospects of creating a pacemaker cardiac tissue using modern technologies



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

At the present time there are a lot of implantable pacemakers, which are able to replace the function of physiological pacemakers (sinoatrial and atrioventricular nodes). These systems are currently imperfect and have a number of limitations. They require constant monitoring and maintenance due to limited battery life. There are risks of infection of pacemakers system, which may cause a pacemaker reimplantation. Implantable devices are often incompatible with other electric devices (metal detectors and magnets in MRI scanners, as well as power lines), which may affect the operation of pacemakers. Sometimes the electrodes can not be physiologically positioned, which may lead to heart failure and additional symptoms worsen the patient>s quality of life. This article is devoted to a review of methods for creating biological pacemakers, considering advantages and disadvantages of the available modern strategies for obtaining pacemaker tissue, which is based on the using of key modifier genes regulating the embryonic development of ventricular, atrial and pacemaker cardiomyocytes. Furthermore the technologies for creating induced patient specific pluripotent cells (IPSC) and the subsequent development of directional differentiation protocols in the cardial direction discover new approaches for the development of biological pacemakers. Also briefly described the prospects for using modern materials for the development of tissue engineering.

Full Text

Restricted Access

About the authors

S. A Bayramova

E.N. Meshalkin Siberian Federal Biomedical Research Center

A. G Strelnikov

E.N. Meshalkin Siberian Federal Biomedical Research Center

A. B Romanov

E.N. Meshalkin Siberian Federal Biomedical Research Center

A. A Yakubov

E.N. Meshalkin Siberian Federal Biomedical Research Center

D. V Losik

E.N. Meshalkin Siberian Federal Biomedical Research Center

S. V Pavlova

Institute of Cytology and Genetics of Siberian Branch of the RAS

K. I Agladze

Moscow Institute of Physics and Technology (State University)

E. A Pokushalov

E.N. Meshalkin Siberian Federal Biomedical Research Center

References

  1. Adams R. Cases of diseases of the heart, accompanied with pathological observations. Hosp.Rep., Dublin; 1827.
  2. Stokes W. Observations on some cases of permanently slow pulse. Dublin Q. J. Med. Sci., 1846; 2: 73-85.
  3. Keith A., Flack M. The form and nature of the muscular connections between the primary divisions of the vertebrate heart. J. Anat. Physiol., 1907; 41: 172-89.
  4. Lewis T., Oppenheimer B.S., Oppenheimer A. The site of origin of the mammalian heart-beat: the pacemaker in the dog. Heart 1910; 2: 147-69.
  5. His W. Die Tätigkeit des embryonalenHerzens und derenBedeutungfür die Lehre von der Herzbewegungbeim Erwachsenen Title. Arb. Med. Klin. Leipzig 1893; 14-49.
  6. Tawara S., Fischer V. Das Reizleitungs system des Säugetierherzens-Einenatomisch pathlogische Studieüber das Atrioventrikularbündel und die Purkinjeschen Fäden. Jena, Germany; 1906.
  7. McWilliam J.A. Electrical stimulation of the heart in man. Br. Med. J. 1889; 1: 348-50.
  8. Bigelow W.G., Callaghan J.C., Hopps J.A. General hypothermia for experimental intracardiac surgery: the use of electrophrenic respirations, an artificial pacemaker for cardiac standstill, and radiofrequency rewarming in general hypothermia. Transactions of the Meeting of the American Surgical Association1950; 68: 211-9.
  9. Zoll P.M. Resuscitation of the heart in ventricular standstill by external electric stimulation. N. Engl. J. Med. 1952; 247(20): 768-71.
  10. Jeffrey K. The invention and reinvention of cardiac pacing. Cardiol. Clin. 1992; 10: 561-71.
  11. Lidwell M.C. Cardiac disease in relation to anaesthesia. In: Proceedings of the Third SessionofAustralasian Medical Congress(British Medical Association); 1929 Sep 2-7; Sydney, Australia;1929. p.160.
  12. Мареев Ю.В. Модуляция сердечной сократимости влечении пациентов с хронической сердечной недостаточностью. Патология кровообращения и кардиохирургия 2014; 18(4): 158-63.
  13. Alt E., Matula M., Theres H. et al. The basis for activity controlled rate variable cardiac pacemakers: an analysis of mechanical forces on the human body induced by exercise and environment. Pacing Clin. Electrophysiol. 1989; 12: 1667-80.
  14. Стрельников А.Г., Якубов А.А., Сергеевичев Д.С. идр. Метод эндокардиальной инъекции ботулотоксина в ганглионарные сплетения автономной нервной системы сердца в целях снижения уязвимости к фибрилляции предсердий. Патология кровообращения и кардиохирургия 2015; 19(4): 99-107.
  15. Rosen M.R. 15th annual GordonK. Moe Lecture. Heart Rhythm 2005; 2(4): 418-28.
  16. Rosen M.R., Brink P.R., Cohen I.S. et al. Genes, stem cells and biological pacemakers. Cardiovasc. Res. 2004; 64(1): 12-23.
  17. Kashiwakura Y., Cho H.C., Barth A.S. et al. Gene transfer of a synthetic pacemaker channel into the heart: a novel strategy for biological pacing. Circulation 2006; 114(16): 1682-6.
  18. Kehat I., Khimovich L., Caspi O. et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol. 2004; 22(10): 1282-9.
  19. Lakatta E.G., Maltsev V.A., Vinogradova T.M. A Coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart's pacemaker. Circ. Res. 2010; 106(4): 659-73.
  20. Yaniv Y., Ahmet I., Liu J. et al. Synchronization of sinoatrial node pacemaker cell clocks and its autonomic modulation impart complexity to heart beating intervals. Heart Rhythm2014; 11(7): 1210-9.
  21. Yaniv Y., Lakatta E.G., Maltsev V.A. From two competing oscillators to one coupled-clock pacemaker cell system. Front. Physiol. 2015; 6(FEB): 1-8.
  22. Yaniv Y., Spurgeon H.A., Lyashkov A.E. et al. Crosstalk between mitochondrial and sarcoplasmic reticulum Ca2+ cycling modulates cardiac pacemaker cell automaticity. PLoS One 2012; 7(5): e37582.
  23. Maltsev V.A., Yaniv Y., Maltsev A.V. et al. Modern Perspectives on Numerical Modeling of Cardiac Pacemaker Cell. J. Pharmacol. Sci. 2014; 125(1): 6-38.
  24. Zhang X.H., Wei H., Saric T. et al. Regionally diverse mitochondrial calcium signaling regulates spontaneous pacing in developing cardiomyocytes. Cell Calcium 2015; 57t5-6): 321-36.
  25. Morad M., Zhang X.N. Mechanisms of spontaneous pacing: SA-nodal cells, neonatal cardiomyocytes, and human Stem cell derived cardiomyocytes. Can. J. Physiol. Pharmacol. 2017; 1-29.
  26. Qu J., Barbuti A., Protas L. et al. HCN2 overexpression in newborn and adult ventricular myocytes: distinct effects on gating and excitability. Circ. Res. 2001; 89(1): E8-14.
  27. Miake J., Marban E., Nuss H.B. Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. J. Clin. Invest. 2003; 111(10): 1529-36.
  28. Edelberg J.M., Aird W.C., Rosenberg R.D. Enhancement of murine cardiac chronotropy by the molecular transfer of the human 2 adrenergic receptor cDnA. J. Clin. Invest. 1998; 101(2): 337-43.
  29. Christoffels V.M., Smits G.J., Kispert A. et al. Development of the pacemaker tissues of the heart. Circ. Res. 2010; 106(2): 240-54.
  30. Vedantham V. New Approaches to Biological Pacemakers: Links to Sinoatrial Node Development. Trends Mol. Med. 2015; 21(12): 749-61.
  31. Ye W., Song Y., Huang Z. et al. Genetic regulation of sinoatrial node development and pacemaker program in the venous pole. J. Cardiovasc. Dev. Dis. 2015; 2(4): 282-98.
  32. Burkhard S., Eif V., Garric L. et al.On the Evolution of the cardiac pacemaker.J. Cardiovasc. Dev. Dis. 2017; 4(2): 4.
  33. Weerd J.H., Christoffels V.M. The formation and function of the cardiac conduction system. Development 2016; 143(2): 197-210.
  34. Kapoor N., Liang W., Marban E. et al. Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat. Biotechnol. 2012; 31(1): 54-62.
  35. Brand T. Tbx18 and the generation of a biological pacemaker. Are we there yet? J. Mol. Cell. Cardiol.2016; 97: 263-5.
  36. Greulich F., Trowe M.O., Leffler A. et al. Misexpression of Tbx18 in cardiac chambers of fetal mice interferes with chamber-specific developmental programs but does not induce a pacemaker-like gene signature. J. Mol. Cell. Cardiol. 2016; 97: 140-9.
  37. Yang M., Zhang G., Wang T. et al. TBX18 gene induces adipose-derived stem cells to differentiate into pacemaker-like cells in the myocardial microenvironment. Int. J. Mol. Med. 2016; 38(5): 1403-10.
  38. Bakker M.L., Boink G.J., Boukens B.G. et al. T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemakerlike cells. Cardiovasc. Res. 2012; 94(3): 439-49.
  39. Hu Y.F., Dawkins J.F., Cho H.C. et al. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block. Sci. Transl. Med. 2014; 6(245): 245-94.
  40. Ye W., Wang J., Song Y. et al. A common Shox2-Nkx2-5 antagonistic mechanism primes the pacemaking cell fate in the pulmonary vein myocardium and sinoatrial node. Development 2015; 142: 2521-32.
  41. Espinoza-Lewis R.A., Yu L., He F. et al. Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5. Dev. Biol. 2009; 327(2): 376-85.
  42. Burridge P.W., Matsa E., Shukla P. et al. Chemically defined generation of human cardiomyocytes. Nat. Methods 2014; 11(8): 855-60.
  43. LianXiaojun S.P., Bao1 X., Zilberter M. et al. Chemically defined albumin-free human cardiomyocyte generation. Nat. Methods 2015; 12(7): 595-6.
  44. Protze S.I., Liu J., Nussinovitch U. et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat. Biotechnol. 2017; 35(1): 55-68.
  45. lonta V., Liang W., Kim E.et al. SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells, improving biological pacing ability. Stem Cell Reports 2015; 4(1): 129-42.
  46. Saito Y., Nakamura K., Yoshida M. et al. Enhancement of spontaneous activity by hcn4 overexpression in mouse embryonic stem cell-derived cardiomyocytes - a possible biological pacemaker. PLoS One 2015; 10(9): 1-16.
  47. Du D.T.M., Hellen N., Kane C. et al. Action potential morphology of human induced pluripotent stem cell-derived cardiomyocytes does not predict cardiac chamber specificity and is dependent on cell density. Biophys. J. 2015; 108(1): 1-4.
  48. Isenberg W.J.Y. Building structure into engineered tissues. Mater. Today 2006; 12(9): 54-60.
  49. Vacanti C.A. History of tissue engineering and a glimpse into its future. Tissue Eng. 2006; 12(5): 1137-42.
  50. Orlova Y., Magome N., Liu L. et al.Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue. Biomaterials 2011; 32(24): 5615-24.
  51. Boink G.J., Christoffels V.M., Robinson R.B. et al. The past, present, and future of pacemaker therapies. TrendsCardiovasc. Med. 2015; 25(8): 661-73.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies