Regenerative technologies in treatment of diabetic foot ulcers



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Regenerative medicine is one of the new fast growing approaches to the treatment of a variety of diseases, including oncology and cardiovascular pathology, degenerative-dystrophic diseases of bones and joints, and other complex diseases including diabetes mellitus. Diabetes is regarded as one of the most dangerous non-infectious diseases in the world with a rising incidence that reaches pandemic proportions. Treatment of patients with diabetic foot ulcers including those with peripheral arterial disease is a challenging issue due to the increased risks for poor and lethal outcomes, which makes the social and economic burden of diabetes mellitus very high. The article presents state-of-the-art regenerative technologies in treatment of diabetic foot ulcers. Special attention is paid to gene and cell therapy.

Full Text

Restricted Access

About the authors

R. E Kalinin

I.P. Pavlov Ryazan State Medical University

Ryazan, Russia

I. A Suchkov

I.P. Pavlov Ryazan State Medical University

Ryazan, Russia

N. D Mzhavanadze

I.P. Pavlov Ryazan State Medical University

Ryazan, Russia

A. A Krylov

I.P. Pavlov Ryazan State Medical University

Ryazan, Russia

A. A Isaev

Human Stem Cell Institute

Moscow, Russia

I. L Plaksa

Human Stem Cell Institute

Moscow, Russia

R. V Deev

I.P. Pavlov Ryazan State Medical University; Human Stem Cell Institute

Moscow,Ryazan, Russia

References

  1. Митиш В.А., Пасхалова Ю.С., Ерошкин И.А. и др. Гнойнонекротические поражения при нейроишемической форме синдрома диабетической стопы. Хирургия 2014; 1: 48-53.
  2. Leone S., Pascale R., Vitale M. et al. Epidemiology of diabetic foot. Infez. Med. 2012; 20 Suppl 1: 8-13.
  3. Margolis D.J., Malay D.S., Hoffstad O.J. et al. Incidence of diabetic foot ulcer and lower extremity amputation among Medicare beneficiaries, 2006 to 2008, https://www.ncbi.nlm.nih.gov/books/ NBK65149.
  4. Lipsky B.A., Berendt A.R., Cornia P.B. et al. Infectious diseases society of america clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin. Infect. Dis. 2012; 54: 132-73.
  5. Armstrong D.G., Wrobel J., Robbins J.M. et al. Guest editorial: are diabetes-related wounds and amputations worse than cancer? Int. Wound J. 2007; 4(4): 286-7.
  6. Галстян Г.Р., Сергеева С.В., Игнатьева В.И. и др. Клинико-экономическое обоснование стоимости квоты на лечение пациентов с синдромом диабетической стопы. Сахарный диабет 2013; 3: 71-83.
  7. Prompers L., Huijberts M., Apelqvist J. et al. Delivery of care to diabetic patients with foot ulcers in daily practice: results of the Eurodiale Study, a prospective cohort study. Diabet. Med. 2008; 25: 700-7.
  8. Vinik A.I., Maser R.E., Mitchell B.D. et al. Diabetic autonomic neuropathy. Diabetes Care 2003; 26: 1553-79.
  9. Prompers L., Schaper N., Apelqvist J. et al. Prediction of outcome in individuals with diabetic foot ulcers: focus on the differences between individuals with and without peripheral arterial disease. The EURODIALE Study. Diabetologia 2008; 51(5): 747-55.
  10. Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N. Engl. J. Med. 1993; 329(27): 2002-12.
  11. Beckman J.A., Goldfine A.B., Gordon M.B. et al. Ascorbate restores endothelium-dependent vasodilation impaired by acute hyperglycemia in humans. Circulation 2001; 103: 1618-23.
  12. Paneni F., Beckman J.A., Creager M.A. et al. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Circulation 2003; 108: 1527-32.
  13. Giacco F., Brownlee M. et al. Oxidative stress and diabetic complications. Circ. Res. 2010; 107(9): 1058-70.
  14. Schaper N.C., Huijberts M., Pickwell K. Neurovascular control and neurogenic inflammation in diabetes. Diabetes Metab. Res. Rev. 2008; 24 Suppl 1: 40-4.
  15. Apelqvist J. Diagnostics and treatment of the diabetic foot. Endocrine 2012; 41: 384-97.
  16. De Vivo S., Palmer-Kazen U., Kalin B. et al. Risk factors for poor collateral development in claudication. Vasc. Endovascular Surg. 2005; 39: 519-24.
  17. Калинин Р.Е., Сучков И.А., Пшенников А.С. и соавт. Эффективность L-аргинина в лечении атеросклероза артерий нижних конечностей и профилактике рестеноза зоны реконструкции. Вестник Ивановской медицинской академии 2013; 18(2): 18-21.
  18. Калинин Р.Е., Сучков И.А., Никифоров А.А. и соавт. Динамика некоторых биохимических показателей у больных с облитерирующим атеросклерозом артерий нижних конечностей в различные сроки после реконструктивных операций. Российский медико-биологический вестник им. акад. И.П.Павлова 2012; 1: 41-4.
  19. Калинин Р.Е., Абросимов В.Н., Сучков И.А. и др. Ишемические болезни в практике семейного врача. Москва: ГЭОТАР-Медиа; 2016.
  20. Schaper N.C., Andros G., Apelqvist J. et al. Diagnosis and treatment of peripheral arterial disease in diabetic patients with a foot ulcer. A progress report of the International Working Group on the Diabetic Foot. Diabetes Metab. Res. Rev. 2012; 28 Suppl 1: 218-24.
  21. Aghdam S.Y., Eming S.A., Willenborg S. et al. Vascular endothelial insulin/IGF-1 signaling controls skin wound vascularization. Biochemical and Biophysical Research Communications 2012; 421(2): 197-202.
  22. Tiaka E.K., Papanas N., Manolakis A.C. et al. Epidermal growth factor in the treatment of diabetic foot ulcers: an update. Perspectives in Vascular Surgery and Endovascular Therapy 2012; 24(1): 37-44.
  23. J. Berlanga-Acosta. Diabetic lower extremity wounds: the rationale for growth factors-based infiltration treatment. International Wound Journal 2011; 8(6): 612-20.
  24. Guo S., DiPietro L.A. Factors affecting wound healing. Journal of Dental Research 2010; 89(3): 219-29.
  25. Gurtner G.C., Werner S., Barrandon Y. et al. Wound repair and regeneration. Nature 2008; 453(7193): 314-21.
  26. Ibuki A., Akase T., Nagase T. et al. Skin fragility in obese diabetic mice: possible involvement of elevated oxidative stress and upregulation of matrix metalloproteinases. Experimental Dermatology 2012; 21(3): 178-83.
  27. Cavanagh P.R., Lipsky B.A., Bradbury A.W. et al. Treatment for diabetic foot ulcers. The Lancet 2005; 366(9498): 1725-35.
  28. Marti-Carvajal A.J., Gluud C., Nicola S. et al. Growth factors for treating diabetic foot ulcers. Cochrane Database Syst. Rev. 2015; 10: CD008548.
  29. Ferna'ndez-Montequin J.I., Valenzuela-Silva C.M., Diaz O.G. et al. Intra-lesional injections of recombinant human epidermal growth factor promote granulation and healing in advanced diabetic foot ulcers: Multicenter, randomised, placebo-controlled, double-blind study. International Wound Journal 2009; 6: 432-43.
  30. Tissue Repair Company. Phase 2b Study of GAM501 in the Treatment of Diabetic Ulcers of the Lower Extremities (MATRIX), https://clinicaltrials.gov/ct2/show/NCT00493051.
  31. Lopez-Saura P.A., Berlanga-Acosta J., Ferna'ndez-Montequin J.I. et al. Intralesional human recombinant epidermal growth factor for the treatment of advanced diabetic foot ulcer: from proof of concept to confirmation of the efficacy and safety of the procedure. In: Dinh T., editor. Global Perspective on Diabetic Foot Ulcerations: InTech; 2011. p. 217-38.
  32. Ferna'ndez-Montequin J.I., Valenzuela-Silva C.M., Gonzalez-Diaz O. et al. Intra-lesional injections of recombinant human Epidermal growth factor promote granulation and healing in advanced diabetic foot ulcers. Multicenter, randomized, placebo-controlled, double blind study. Int. Wound J. 2009; 6(6): 432-43.
  33. Галстян Г.Р., Дедов И.И., Авксентьева М. В. и др. Клиникоэкономический анализ применения препарата эпидермального фактора роста (Эберпротп®) у больных с синдромом диабетической стопы. Эндокринная хирургия 2013; 1: 4-15.
  34. РЛС. Фактор роста эпидермальный (Recombinant Human Epidermal Growth Factor): инструкция, применение и формула. Алфавитный указатель лекарств и субстанций РЛС®, http://www. rlsnet.ru/mnn_index_id_6471.htm.
  35. Smiell J.M., Wieman T.J., Steed D.L. et al. Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies. Wound Repair Regen. 1999; 7: 335-46.
  36. FDA. Communication about the ongoing safety review of Regranex (becaplermin), http://www.fda.gov/Drugs/DrugSafety/Post marketDrugSafetyInformationforPatientsandProviders/DrugSafetyInfo rmationforHeathcareProfessionals/ucm072121.
  37. Li Q., Yang M. Stem Cell Research. A new era for reconstructive surgery. In: Danilla S., editor. Selected Topics in Plastic Reconstructive Surgery: Intech; 2012. p. 163-70.
  38. Kolluru G.K., Bir S.C., Kevil C.G. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. International Journal of Vascular Medicine 2012; 2012: 918267.
  39. Aicher A., Heeschen C., Mildner-Rihm C. et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat. Med. 2003; 9: 1370-6.
  40. Aicher A., Zeiher A.M., Dimmeler S. Mobilizing endothelial progenitor cells. Hypertension 2005; 45: 321-5.
  41. Liu Z.J., Velazquez O.C. Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing. Antioxidants and Redox Signaling 2008; 10(11): 1869-82.
  42. Gowdak L.H., Poliakova L., Li Z. et al. Induction of angiogenesis by cationic lipid-mediated VEGF165 gene transfer in the rabbit ischemic hindlimb model. J. Vasc. Surg. 2000; 32: 343-52.
  43. Швальб П.Г., Калинин Р.Е., Деев Р.В. и др. Генная фармакотерапия неоперабельных пациентов с хронической ишемией нижних конечностей. Рос. мед.-биол. вестн. им. акад. И.П. Павлова 2011; 4: 28-37.
  44. Деев Р.В., Мжаванадзе Н.Д. Влияние геннотерапевтического индуктора неоангиогенеза pvegf165 на показатели макро и микрогемодинамики у пациентов с хронической ишемией нижних конечностей атеросклеротического генеза. Наука молодых - EruditioJuvenium 2014; 1: 68-73.
  45. Червяков Ю.В., Староверов И.Н., Нерсесян Е.Г. Терапевтический ангиогенез в лечении больных с хроническими облитерирующими заболеваниями артерий нижних конечностей. Ближайшие и отдаленные результаты. Ангиология и сосудистая хирургия 2012; 18(3): 19.
  46. Human Stem Cell Institute, Russia. Safety and efficacy study of neovasculgen (Pl-VEGF165) gene therapy in patients with diabetic foot, https://clinicaltrials.gov/ct2/show/NCT02538705.
  47. ViroMed Co., Ltd. dba VM BioPharma. Safety and efficacy study of VM202 in the treatment of chronic non-healing foot ulcers, https://clinicaltrials.gov/ct2/show/NCT02563522.
  48. Belch J., Hiatt W.R., Baumgartner I. Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet 2011; 377(9781): 1929-37.
  49. Плотников М.В., Ризванов А.А., Масгутов Р.Ф. и др. Первый клинический опыт применения прямой генной терапии VEGF и bFGF при лечении пациентов с критической ишемией нижних. Клеточная трансплантология и тканевая инженерия 2012; YII(3): 180-4.
  50. Juventas Therapeutics, Inc. Study to Evaluate the safety and efficacy of JVS-100 administered to adults with critical limb ischemia, http://clinicaltrials.gov/ct2/show/NCT01410331.
  51. Mulder G.I., Tallis A.J., Marshall V.T. et al. Treatment of nonhealing diabetic foot ulcers with a platelet-derived growth factor gene-activated matrix (GAM501): results of a phase 1/2 trial. Wound Repair Regen. 2009; 17(6): 772-9.
  52. Asahara T., Murohara T., Sullivan A. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-7.
  53. Timmermans F., Plum J., Yoder M.C. et al. Endothelial progenitor cells: identity defined? J. Cell. Mol. Med. 2009; 13: 87-102.
  54. Deng X., Szabo S., Chen L. et al. New cell therapy using bone marrow-derived stem cells/endothelial progenitor cells to accelerate neovascularization in healing of experimental ulcerative colitis. Current Pharmaceutical Design 2011; 17(16): 1643-51.
  55. Lee M.J., Kim J., Lee K.I. et al. Enhancement of wound healing by secretory factors of endothelial precursor cells derived from human embryonic stem cells. Cytotherapy 2011; 13(2): 165-78.
  56. Park S., Tepper O.M., Galiano R.D. et al. Selective recruitment of endothelial progenitor cells to ischemic tissues with increased neovascularization. Plastic and Reconstructive Surgery 2004; 113: 284-93.
  57. Oskowitz A., McFerrin H., Gutschow M. et al. Serum-deprived human multipotent mesenchymal stromal cells (MSCs) are highly angiogenic. Stem cell research 2011; 6(3): 215-25.
  58. Dominici M., Le Blanc K., Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
  59. Zou Z., Zhang Y., Hao L. et al. More insight into mesenchymal stem cells and their effects inside the body. Expert Opin. Biol. Ther. 2010; 10(2): 215-30.
  60. Rosova I. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 2008; 26: 2173-82.
  61. Yoshida M., Horimoto H., Mieno S. Intra-arterial bone marrow cell transplantation induces angiogenesis in rat hindlimb ischemia. Eur. Surg. Res. 2003; 35: 86-91.
  62. Hocking A.M., Gibran N. S. Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Experimental Cell Research 2010; 316(14): 2213-9.
  63. Chen L., Tredget E.E., Wu P.Y.G. et al. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS ONE 2008; 3(4): e1886.
  64. Peng C., Chen B., Kao H.K. et al. Lack of FGF-7 further delays cutaneous wound healing in diabetic mice. Plastic and Reconstructive Surgery 2011; 128(6): 673-84.
  65. Kwon D.S., Gao X., Liu Y.B. et al. Treatment with bone marrow-derived stromal cells accelerates wound healing in diabetic rats. International Wound Journal 2008; 5(3): 453-63.
  66. Yang M., Sheng L., Zhang T.R. et al. Stem cell therapy for lower extremity diabetic ulcers: where do we stand? BioMed Research International 2013; 2013: 462179.
  67. Sheba Medical Center. Safety study of stem cells treatment in diabetic foot ulcers, https://clinicaltrials.gov/ct2/show/NCT01686139.
  68. Chinese PLA General Hospital. Stem cell therapy for patients with vascular occlusive diseases such as diabetic foot, https://clinicaltrials.gov/ct2/show/NCT02304588. NLM Identifier: NCT02304588.
  69. Mizuno H., Tobita M., Uysal A.C. Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 2012; 30(5): 804-10.
  70. Bailey M., Kapur S., Katz A. J. Characterization of adipose-derived stem cells: an update. Current Stem Cell Research and Therapy 2010; 5(2): 95-102.
  71. Kim E.K., Li G., Lee T.J. et al. The effect of human adipose-derived stem cells on healing of ischemic wounds in a diabetic nude mouse model. Plastic and Reconstructive Surgery 2011; 128(2): 387-94.
  72. Nambu M., Ishihara M., Kishimoto S. et al. Stimulatory effect of autologous adipose tissue-derived stromal cells in an atelocollagen matrix on wound healing in diabetic db/db Mice. Journal of Tissue Engineering 2011; 2011: 158105.
  73. Yang M., Sheng L., Li H. et al. Improvement of the skin flap survival with the bone marrow-derived mononuclear cells transplantation in a rat model. Microsurgery 2010; 30(4): 275-81.
  74. Murphy M.P., Lawson J.H., Rapp B.M. et al. Autologous bone marrow mononuclear cell therapy is safe and promotes amputation-free survival in patients with critical limb ischemia. Journal of Vascular Surgery 2011; 53(6): 1565-74.
  75. Sivan-Loukianova E., Awad O.A., Stepanovic V. et al. CD34+ blood cells accelerate vascularization and healing of diabetic mouse skin wounds. Journal of Vascular Research 2003; 40(4): 368-77.
  76. Ruiz-Salmeron R., de la Cuesta-Diaz A., Constantino-Bermejo M. et al. Angiographic demonstration of neoangiogenesis after intraarterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia. Cell Transplantation 2011; 20(10): 1629-39.
  77. Ravari H., Hamidi-Almadari D., Salimifar M. et al. Treatment of non-healing wounds with autologous bone marrow cells, platelets, fibrin glue and collagen matrix. Cytotherapy 2011; 13(6): 705-11.
  78. Bucala R., Spiegel L.A., Chesney J. et al. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1994; 1(1): 71-81.
  79. Kao H.K., Chen B., Murphy G.F. et al. Peripheral blood fibrocytes: enhancement of wound healing by cell proliferation, re-epithelialization, contraction, and angiogenesis. Annals of Surgery 2011; 254(6): 1066-74.
  80. Wang F., Jiao H., Stewart T.L. et al. Fibrocytes from burn patients regulate the activities of fibroblasts. Wound Repair and Regeneration 2007; 15(1): 113-21.
  81. Jinqing L., Hong T., Xiaolin W. et al. Circulating fibrocytes stabilize blood vessels during angiogenesis in a paracrine manner. The American Journal of Pathology 2014; 184(2): 556-71.
  82. Bellini A., Mattoli S. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Laboratory Investigation 2007; 87(9): 858-70.
  83. Zaulyanov L., Kirsner R.S. A review of a bi-layered living cell treatment (Apligraf®) in the treatment of venous leg ulcers and diabetic foot ulcers. Clinical Interventions in Aging 2007; 2(1): 93-8.
  84. Veves A., Falanga V., Armstrong D.G. et al. Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial. Diabetes Care 2001; 24: 290-5.
  85. Mansbridge J., Liu K., Patch R. et al. Three-dimensional fibroblast culture implant for the treatment of diabetic foot ulcers: metabolic activity and therapeutic range. Tissue Engineering 1998; 4: 403-14.
  86. Lavery L.A., Fulmer J., Shebetka K.A. et al. Diabetic Foot Ulcer Study Group. The efficacy and safety of Grafix(®) for the treatment of chronic diabetic foot ulcers: results of a multi-centre, controlled, randomised, blinded, clinical trial. Int. Wound J. 2014; 11(5): 554-60.
  87. Gibbons GW. Grafix®, a cryopreserved placental membrane, for the treatment of chronic/stalled wounds. Advances in Wound Care 2015; 4(9): 534-44.
  88. Shin L., Peterson D.A. Human mesenchymal stem cell grafts enhance normal and impaired wound healing by recruiting existing endogenous tissue stem/progenitor cells. Stem Cells Transl. Med. 2013; 2: 33-42.
  89. Duan-Arnold Y., Gyurdieva A., Johnson A. et al. Soluble factors released by endogenous viable cells enhance the antioxidant and chemoattractive activities of cryopreserved amniotic membrane. Advances in Wound Care 2015; 4(6): 329-38.
  90. Lacci K.M., Dardik A. Platelet-rich plasma: support for its use in wound healing. The Yale Journal of Biology and Medicine 2010; 83(1): 1-9.
  91. Macrocure. Macrocure announces results for phase III clinical trial of CureXcell® in diabetic foot ulcers and provides corporate Macrocure Ltd., http://investor.macrocure.com/releasedetail. cfm?releaseid=938787.
  92. Loomans C.J.M., De Koning E.J.P., Staal F.J.T. et al. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 2004; 53(1): 195-9.
  93. Bhansali A., Venkatesh S., Dutta P. et al. Which is the better option: Recombinant human PDGF-BB 0.01% gel or standard wound care, in diabetic neuropathic large plantar ulcers off-loaded by a customized contact cast? Diabetes Research and Clinical Practice 2009; 83: 13-6.
  94. Landsman A., Agnew P., Parish L. et al. Diabetic foot ulcers treated with becaplermin and TheraGauze, a moisture-controlling smart dressing: A randomized, multicenter, prospective analysis. Journal of the American Podiatric Medical Association 2010; 100: 155-60.
  95. Soluble Systems, LLC. TheraGauze™ alone and Regranex®Gel 0.01% plus TheraGauze™ in the treatment of Wagner stage I diabetic foot ulcers, https://clinicaltrials.gov/ct2/show/NCT00389636.
  96. Khandelwal S., Chaudhary P., Poddar D.D. et al. Comparative study of different treatment options of grade III and IV diabetic foot ulcers to reduce the incidence of amputations. Clinics and Practice 2013; 3(1): e9.
  97. Adocia. A Phase 3 Clinical Trial to Assess the effectiveness of bioChaperone PDGF-BB In the treatment of chronic diabetic foot ulcer, https://clinicaltrials.gov/ct2/show/NCT02236793.
  98. Uchi H., Igarashi A., Urabe K. et al. Clinical efficacy of basic fibroblast growth factor (bFGF) for diabetic ulcer. European Journal of Dermatology 2009; 19: 461-8.
  99. Olympus Biotech Corporation. The TRAfermin in neuropathic diabetic foot ulcer study - Northern Europe the TRANS-North Study (TRANS-North), https://clinicaltrials.gov/ct2/show/NCT01217476.
  100. Kastenbauer T., Hornlein B., Sokol G. et al. Evaluation of granulocyte-colony stimulating factor (Filgrastim) in infected diabetic foot ulcers. Diabetologia 2003; 46: 27-30.
  101. Fernandez-Montequin J.I., Valenzuela-Silva C.M., Diaz O.G. et al. Intra-lesional injections of recombinant human epidermal growth factor promote granulation and healing in advanced diabetic foot ulcers: Multicenter, randomised, placebo-controlled, double-blind study. International Wound Journal 2009; 6: 432-43.
  102. Tissue Repair Company. Gene therapy to improve wound healing in patients with diabetes, https://clinicaltrials.gov/ct2/show/ NCT00065663.
  103. Human Stem Cell Institute, Russia. Safety and efficacy study of Neovasculgen (Pl-VEGF165) gene therapy in patients with diabetic foot, https://clinicaltrials.gov/ct2/show/NCT02538705.
  104. Tower Outpatient Surgical Center. Adipose derived regenerative cellular therapy of chronic wounds, https://clinicaltrials. gov/ct2/show/NCT02092870.
  105. Anterogen Co., Ltd. Safety of ALLO-ASC-DFU in the Patients with diabetic foot ulcers, https://clinicaltrials.gov/ct2/show/ NCT02394886.
  106. Qingdao University. Umbilical cord mesenchymal stem cells injection for diabetic foot, https://clinicaltrials.gov/ct2/show/ NCT01216865.
  107. Kirana S., Stratmann B., Prante C. et al. Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. Int. J. Clin. Pract. 2012; 66(4): 384-93.
  108. Ruhr University of Bochum. Induced wound healing by application of expanded bone marrow stem cells in diabetic patients with critical limb ischemia, https://clinicaltrials.gov/ct2/show/ NCT01065337.
  109. Pontificia Universidade Catolica do Parana. Safety and efficacy of autologous bone marrow stem cells for lower extremity ischemia treating, https://clinicaltrials.gov/ct2/show/NCT01903044.
  110. Ruiz-Salmeron R., de la Cuesta-Diaz A., Constantino-Bermejo M. et al. Angiographic demonstration of neoangiogenesis after intraarterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia. Cell Transplant. 2011; 20(10): 1629-39.
  111. Andalusian initiative for advanced therapies - Fundacion Publica Andaluza Progreso y Salud. Autologous bone marrow derived mononuclear cells in treating diabetic patients with critical limb ischemia, https://clinicaltrials.gov/show/NCT00872326.
  112. Xiaobing Fu, Chinese PLA General Hospital. Stem cell therapy for patients with vascular occlusive diseases such as diabetic foot, https://clinicaltrials.gov/ct2/show/NCT02304588.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies