Optimization of teratoma formation assay



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Teratoma formation assay is necessary to estimate in vivo pluripotency of stem cells especially stem cell lines of human origin. Nevertheless convenient, valid and universal “standards” to analyze stem cell derived tumors have not been developed yet. New protocol for monitoring teratoma growth, morphological and histological analyzes of tumor samples is proposed in this paper. This protocol is oriented on review of tumors morphology and histology per se. The list-describer includes 17 obligate and 12 facultative diagnostic sell types and 7 diagnostic cell complexes. The protocol takes into account complicity and heterogeneity of teratoma structure and allows detect different morphological features of malignization process inside stem cell derived tumors in situ. The protocol was successfully applied for teratoma formation test which has been performed for 52 stem cell lines of different species origin (mouse, rat, аmerican mink and human). 326 stem cell derived tumors were completely described, reviewed and analyzed.

Full Text

Restricted Access

About the authors

E. A Kizilova

Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences

Email: pinus@bionet.nsc.ru
Novosibirsk, Russia

References

  1. Hogan B., Beddington R., Constantini F. et al., editors. Manipulating the Mouse Embryo. 2nd Edition. New York: Cold Spring Harbor Laboratory Press. 1994.
  2. Nagy A., Gertsenstein M., Vintersten C., et al., editors. Manipulating the Mouse Embryo. 3d Edition. New York: Cold Spring Harbor Laboratory Press. 2003.
  3. Hentze H., Soong P.L., Wang S.T. et al. Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res. 2009; 2: 198-210.
  4. Muller F.J., Goldman J., Loser P. et al. A call to standardize teratoma assays used to define human pluripotent cell lines. Cell Stem Cell. 2010; 7: 412-14.
  5. Кизилова Е.А. «Тест на химеризм»: возможности и превратности метода. В: Закиян С.М., Власова В.В., Дементьева Е.В., редакторы. Эпигенетика. Новосибирск: Издательство СО РАН; 2012. С. 343-57.
  6. Rousset J., Bucchini d., Jami J. Hybrids between F9 nullipotent teratocarcinoma and thymus cells produce multi-differentiated tumors in mice. dev. Biol. 1983; 96: 331-6.
  7. Robertson E. J. Pluripotential stem cell lines as a route into the mouse germ line. Trends Genet. 1986; 2: 9-13.
  8. Thomson J.A., Itskovich-Elder J., Shapiro S.S. et al. Embrionic stem cell lines derived from human blastocysts. Science 1998; 282: 1145-47.
  9. Damjanov I., Anrews P.W. The terminology of teratocarcinomas and teratomas. Nat. Biotech. 2007; 25: 1212.
  10. Damjanov I. Teratocarcinoma: neoplastic lessons about normal embryogenesis. Int. J. Dev. Biol. 1993; 37: 39-46.
  11. Andrews P.W. From teratocarcinomas to embryonic stem cells. Phil. Trans. R. Soc. Lond. B. 2002. 357: 405-17.
  12. Przyborski S.A., Christie V.B., Hayman R. et al. Human embryonal carcinoma stem cells: models of embryonic development in humans. Stem Cells Dev. 2004; 13(4): 1-9.
  13. Przyborski S.A. Differentiation of human embryonic stem cells after transplantation in immune deficient mice. Stem Cells. 2005; 23: 1242-50.
  14. Damjanov I. The road from teratocarcinoma to human embryonic stem cells. Stem Cell Rev. 2005; 5: 273-76.
  15. Bulic-Jakus F., Ulamec M., Vlabovich M. et al. Of mice and Men: teratomas and teratocarcinomas. Call. Anthropol. 2006; 4: 921-24.
  16. Blum B., Benvenisty N. The tumorigenisity of human embryonic stem cells. In: Advances in Cancer Research. NY: Elsevier Inc; 2008. p. 133-58.
  17. Ben-David U., Benvenisty N. The tumorigenecity of human embryonic and pluripotent stem cells. Nature 2011; 11: 268-77.
  18. Lensch W., Schlaeger T.M., Zon L.I. et al. Teratoma formation assays with human embryonic stem cells: a rationale for one type of human-animal chimera. Cell Stem Cel. 2007; 1t3):253-8.
  19. Behringer R.R. Human-animal chimeras in biomedical research. Cell Stem Cell. 2007; 1: 259-62.
  20. Siqueira da Fonseca S.A, Abdelmassih S., de Mello Cintra Lavagnolli T., et al. Human immature dental pulp stem cells' contribution to developing mouse embryos: production of human/mouse preterm chimaeras. Cell Prolif. 2009; 42(2): 132-40.
  21. Simerly C., McFarland D., Castro C. et al. Interspecies chimera between primate embryonic stem cells and mouse embryos: monkey ESCs engraft into mouse embryos, but not post-implantation fetuses. Stem Cell Res. 2011; 7(1): 28-40.
  22. Du L., Xu X., Вuan X. et al. Developmental incompatibility of human parthenogenetic embryonic stem cells in mouse blastocysts. In Vitro Cell Dev. Biol. Anim. 2012; 48(3): 156-64.
  23. Karpowicz P., Cohen C.B., Derek van der Kooy. Developing human-nonhuman chimeras in human stem cell research: ethical issues and boundaries. Ken. Inst.of Eth. J. 2005; 15(2): 107-34.
  24. Chen I-P., Fukuda K., Fusaki N. et al. Induced pluripotent stemm cells Reprogramming by integration-free sendai virus vectors from peripheral blood of patients with craniometaphyseal dysplasia. Cell. Reprogram. 2013; 15(6): 503-13.
  25. Zhao H., Davies T.J., Ning J. et al. A highly optimized protocol for reprogramming cancer cells to pluripotency using nonviral plasmid vectors. Cell. Reprogram. 2015; 17(1): 7-18.
  26. Buta C., David R., Dressel R. et al. Reconsidering pluripotency tests: Do we still need teratoma assay? Stem Cell Res. 2013; 11: 552-62.
  27. Muller F.J., Schuldt B.M., Williams R. et al. A bioinformatic assay for pluripotency in human cells. Nat. Methods. 2011; 8: 315-17.
  28. Hagedorn M., Javerzat S., Gilger D. et al. Accessing key steps of human tumor progression in vivo by using an avian embryo model. PNAS 2005; 102: 1643-48.
  29. Durupt F., Koppers-Lalic D., Balme B. et al. The chicken chorioallanthoic membrane tumor assay as model of qualitative of oncolytic adenoviruses. Cancer. Gen. Ther. 2012; 19: 58-68.
  30. Grigor'eva E.V., Shevchenko A.I., Zhelezova A.I. et al. Stem cells giving rise to extraembryonic tissues. Cell Technol. Biol. Med. 2011; 4: 504-14.
  31. Vasilkova A.A, Kizilova E.A., Puzakov M.V. et al. Dominant manifestation of pluripotency in embryonic stem cell hybrids having various numbers of somatic chromosomes. Mol. Reprod. Dev. 2007; 74: 941-51.
  32. Menzorov A.G., Matveeva N.M., Markalis M.N. et al. Comparison of American mink embryonic stem and induced pluripotent stem cell transcriptomes. BMC GENOMICS. 2015; 16(13):S6.
  33. Vaskova E.A., Medvedev S.P., Sorokina A.E. et al. Transcriptome characteristics and X-chromosome inactivation status in cultured rat pluripotent stem cells. Stem Cell Dev. 2015; 24(24): 2912-24.
  34. Menzorov A, Pristyazhnyuk I, Kizilova H. et al. Cytogenetic analysis and Dlk1-Dio3 locus epigenetic status of mouse embryonic stem cells during early passages. Cytotechnology 2016; 68(1): 67-71.
  35. James R.M, Arends M.J., Plowman S.J. et al. K-ras Proto-oncogene exhibits tumor suppressor activity as its absence promotes tumorigenesis in murine teratomas. Mol. Cancer Res. 2003; 1: 820-5.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies