Plakophilin-2 gene knockout using CRISPR/Cas9 system

Cite item


CRISPR/Cas9 technology opens up broad prospects for genome manipulations. Generation of gene knockout cell lines is one of the applications of this system. This approach allows to reveal previously unknown gene functions and to reproduce the effect of pathogenic mutations. The purpose of this study was to generate plakofilin-2 gene knockout system and assess its suitability for the study of the functional effect of this knockout.

Full Text

Restricted Access

About the authors

A. A Khudiakov

Federal V.A. Almazov North West Medical Research Centre

Saint-Petersburg, Russia

DA. A Kostina

Federal V.A. Almazov North West Medical Research Centre

Saint-Petersburg, Russia

A. A Kostareva

Federal V.A. Almazov North West Medical Research Centre

Saint-Petersburg, Russia

A. B Malashicheva

Federal V.A. Almazov North West Medical Research Centre; Staint-Petersburg State University

Saint-Petersburg, Russia


  1. Gerull B., Heuser A., Wichter Т. et al. Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat. Genet. 2004; 36: 1162-4.
  2. Chen S.N., Gurha P., Lombardi R. et al. The hippo pathway is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy. Circ. Res. 2014; 114: 454-68.
  3. Kim C., Wong J., Wen J. et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature 2013; 494: 105-10.
  4. Chen X., Bonne S., Hatzfeld M. et al. Protein binding and functional characterization of plakophilin 2. Evidence for its diverse roles in desmosomes and beta-catenin signaling. J. Biol. Chem. 2002; 277: 10512-22.
  5. Худяков А.А., Костина Д.А., Костарева А.А. и др. Влияние мутаций в гене плакофиллина-2 на активность канонического сигнального пути Wnt. Цитология 2015; 57: 868-75.
  6. Bhaya D., Davison M., Barrangou R. CRISPR-Cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet. 2011; 45: 273-97.
  7. Terns M.P, Terns R.M. CRISPR-based adaptive immune systems. Curr. Opin. Microbiol. 2011; 14: 321-7.
  8. Wiedenheft B., Sternberg S.H., Doudna J.A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012; 482: 331-8.
  9. Jinek M., Chylinski K., Fonfara I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337: 816-821.
  10. Cong L., Ran F.A., Cox D. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339: 819-23.
  11. Mali P., Yang L., Esvelt K.M. et al. RNA-guided human genome engineering via Cas9. Science 2013; 339: 823-6.
  12. Bikard D., Jiang W., Samai P. et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013; 41: 7429-37.
  13. Cheng A.W., Wang H., Yang H. et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell. Res. 2013; 23: 1163-71.
  14. Chen B., Gilbert L.A., Cimini B.A. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 2013; 155: 1479-91.
  15. Mummery C., Ward-van Oostwaard D. et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 2003; 107: 2733-40.
  16. Ran F.A., Hsu P.D., Wright J. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013; 8: 2281-308.
  17. Sanjana N.E., Shalem O., Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Met. 2014; 11: 783-4.
  18. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680-5.
  19. Fuerer C., Nusse R. Lentiviral Vectors to Probe and Manipulate the Wnt Signaling Pathway. PLoS ONE. 2010; 5(2): e9370.
  20. Chang N., Sun C., Gao L. et al. Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos. Cell. Res. 2013; 23: 465-72.
  21. Cho S.W., Kim S., Kim J.M. et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013; 31: 230-2.
  22. Friedland A.E., Tzur Y.B., Esvelt K.M. et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat. Methods. 2013; 10: 741-3.
  23. Li D., Qiu Z., Shao Y. et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat. Biotechnol. 2013; 31:681-3.

Copyright (c) 2016 PJSC Human Stem Cells Institute

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 57156 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies