Strategies to edit paralogous genes with CRISPR/Cas9



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The purpose of this study is to develop the strategies of CRISPR/Cas9 application to improve fidelity and specificity of this platform. Here we use a model system, which includes target gene and a paralogue - potential aim for off-target double-strand break induction. The study was carried on using Brattleboro rats embryonic fibroblasts which are homozygous for a mutation in arginine-vasopressin gene (target). The potential off-target gene is oxytocin gene: its DNA sequence is almost identical to that of arginine-vasopressin gene. To prevent off-target effect we designed several strategies, which were further used on Brattleboro rats embryonic fibroblasts. Here we show, that these strategies allowed us to generate double-strand breaks in arginine-vasopressin gene without any off-target effects in oxytocin gene. The endonuclease restriction assay shows that we have modified arginine-vasopressin gene while using both CRISPR/Cas9 and single-stranded oligonucleotides as a donor for homologous recombination. At last, if we consider Brattleboro rats as a model of monogenic disease the strategies designed could be translated in human therapeutic genome editing studies.

Full Text

Restricted Access

About the authors

A. A Nemudryi

Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences; Institute of Chemical Biology and Fundamental Medicine, the Siberian Branch of the Russian Academy of Sciences; State Research Institute of Circulation Pathology, Ministry of Healthcare of the Russian Federation

T. B Malankhanova

Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences; Institute of Chemical Biology and Fundamental Medicine, the Siberian Branch of the Russian Academy of Sciences; State Research Institute of Circulation Pathology, Ministry of Healthcare of the Russian Federation; National Research University Novosibirsk State University

A. A Malakhova

Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences; Institute of Chemical Biology and Fundamental Medicine, the Siberian Branch of the Russian Academy of Sciences; State Research Institute of Circulation Pathology, Ministry of Healthcare of the Russian Federation

S. P Medvedev

Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences; Institute of Chemical Biology and Fundamental Medicine, the Siberian Branch of the Russian Academy of Sciences; State Research Institute of Circulation Pathology, Ministry of Healthcare of the Russian Federation

S. M Zakian

Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences; Institute of Chemical Biology and Fundamental Medicine, the Siberian Branch of the Russian Academy of Sciences; State Research Institute of Circulation Pathology, Ministry of Healthcare of the Russian Federation

Email: zakian@bionet.nsc.ru

References

  1. Немудрый А.А., Валетдинова К.Р., Медведев С.П. и др. Системы редактирования геномов TALEN и CRISPR/Cas - инструменты открытий. Acta Naturae 2014, 6(3): 20-42.
  2. Ran F.A., Cong L., Yan W.X. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015; 520(7546): 186-91.
  3. Cong L., Ran F.A., Cox D. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819-23.
  4. Cox D.B., Platt R.J., Zhang F. Therapeutic genome editing: prospects and challenges. Nat. Med. 2015; 21(2): 121-31.
  5. Fu Y., Foden J.A., Khayter C. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 2013; 31(9): 822-6.
  6. Zhang M., D>Aniello C., Verkerk A.0. et al. Recessive cardiac phenotypes in induced pluripotent stem cell models of Jervell and Lange-Nielsen syndrome: disease mechanisms and pharmacological rescue. PNAS USA 2014; 111(50): E5383-92.
  7. Liang P., Xu Y., Zhang X. et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2015; 6(5): 363-72.
  8. Cho S.W., Kim S., Kim J.M. et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013; 31(3): 230-2.
  9. Schmale H. and Richter D. Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats. Nature 1984; 308(5961): 705-9.
  10. Donaldson Z.R., Young L.J. Oxytocin, vasopressin, and the neurogenetics of sociality. Science 2008; 322(5903): 900-4.
  11. Reyon D., Tsai S.Q., Khayter C. et al. FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol. 2012; 30(5): 460-5.
  12. Xiao A., Cheng Z., Kong L. et al. CasOT: a genome-wide Cas9/ gRNA off-target searching tool. Bioinformatics 2014.
  13. Yang L., Guell M., Byrne S. et al. Optimization of scarless human stem cell genome editing. Nucleic Acids Res 2013; 41(19): 9049-61.
  14. Ran F.A., Hsu P.D., Lin C.Y. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013; 154(6): 1380-9.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies