Hepato-specific small-dispersioned matrix as the important component of implanted cell-engineering designs for an auxiliary liver

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Biocompatible and biodegraded matrixes have already framed by the modern biomedical technologies however working out and application of tissue-specific matrixes remains an actual problem of the modern tissue engineering Aim of this work is to show that the technique, which is proposed by the authors for producing of small-dispersioned matrices of decellularization liver (DCL), is good for the making of cell-engineering designs of auxiliary liver The paper presents the technology of producing the small-dispersioned matrix of DCL and the results of using the light, phase- contrast and electron microscopy to characterize the biological properties of the made matrix The hepatospecific properties of the matrix have been studied by using a quantitative evaluation of the MTT-test results on the 5th day of separate cultivation on this matrix 4 types of cells (HepG2, renal epithelial cells, bone marrow MSCs and liver cells from allogeneic donors). On photographs of microscopic examination of the matrix particles of DCL it was seen their porous structure, on the surface of which the preserved conglomerates of native extracellular matrix molecules were presented At comparative study of adhesive properties of the Cytodex-3 matrix particles and the small-dispersioned matrix of DCL it was found out that both matrices had the ability to adhere different cell types, but the matrix of DCL had the ability to preserve of hepato-specific activity significantly expressed. Keeping of biocompatibility and hepato-specific properties by small-dipersioned matrices of DCL, produced on the proposed technology, allows to recommend them for the making of implantable cell-engineering designs of auxiliary liver.

Full Text

Restricted Access

About the authors

N. A Onischenko

Academican V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs

Email: allanik64@yandex.ru

M. E Krasheninnikov

I.M. Sechenov First Moscow State Medical University

M. Y Shagidulin

Academican V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs; I.M. Sechenov First Moscow State Medical University

M. M Bodrova

M.V. Lomonosov Moscow State University

V. I Sevastjanov

Academican V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs

S. V Gautier

Academican V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs; I.M. Sechenov First Moscow State Medical University

References

  1. Онищенко Н.А., Гулай Ю.С., Шагидулин М.Ю. и соавт. Разработка имплантируемых клеточно-инженерных конструкций вспомогательной печени для лечения печёночной недостаточности. Гены и клетки 2015; ХС1): 6-17.
  2. Karina H., Nakayama В.S., Batchelder C.A. et al. Decellularized Rhesus Monkey Kidney as a Three-Dimensional Scaffold for Renal Tissue Engineering. Tissue Engineering 2010 Part A; 16: 2207-16.
  3. Ott H.C., Matthiesen T.S., Goh S.K. et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat. Med. 2008; 14(2): 213-21.
  4. Сотниченко А.С., Губарева Е.В., Гилевич И.В. и соавт. Децеллюляризированный матрикс сердца крысы как основа создания тканеинженерного сердца. Клеточная трансплантология и тканевая инженерия 2013; 8(3): 86-94.
  5. Petersen T.H., Calle E.A., Colehour M.В. et al. Matrix composition and mechanics of decellularized lung scaffolds Cells Tissues Organs 2012; 195(3): 222-31.
  6. Baptista P.M., Siddiqui M.M., Lozier G. et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 2011; 53(2): 604-17.
  7. Barakat O., Abbasi S., Rodriguez G. et al. Use of decellularized porcine liver for engineering humanized liver organ. J. Surg. Res. 2012; 173(1): 11-25.
  8. Baptista P.M., Vyas D., Moran E. et al. Human liver bioengineering using a whole liver decellularized bioscaffold Methods Mol. Biol. 2013; 1001: 289-98.
  9. Yagi H., Fukumitsu K., Fukuda K. et al. Human-scale whole-organ bioengineering for liver transplantation: a regenerative medicine approach. Cell Transplant. 2013; 22(2): 231-42.
  10. Uygun B.E., Soto-Gutierrez A., Yagi H. et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 2010; 16(7): 814-20.
  11. Готье С.В., Онищенко Н.А., Крашенинников М.Е. и соавт. Способ получения тканеспецифического матрикса для тканевой инженерии паренхиматозного органа. Патент РФ на изобр. №2539918. 21 января 2015.
  12. Li Y.S., Haran H.J., Hsieh D.K. et al. Cells and materials for liver tissue engineering. Cell transpl. 2013; 22(4): 685-700.
  13. Шагидулин М.Ю., Онищенко Н.А., Крашенинников М.Е. и др. Выживание клеток печени, иммобилизированных на 3-D матриксах, при моделировании печеночной недостаточности Вестник трансплантологии и искусственных органов 2011; XIII (3): 59-66
  14. Qi W., Johnson D.W., Vesey D.A. et al. Isolation, propagation and characterization of primary tubule cell culture from human kidney. Nephrology (Carlton) 2007; 12(2): 155-9.
  15. Шумаков В.И., Онищенко Н.А., редакторы. Биологические резервы клеток костного мозга и коррекция органных дисфункций Москва: Лавр; 2009
  16. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983; 65: 55-63.
  17. Atala A., Yoo J.J. Decellularisation for whole organ bioengineering Biomed. Mater. 2013; 8(1): 104-6.
  18. Воронкина И.В. Внеклеточный матрикс и его роль в регуляции клеточных функций В: Пинаев Г.П., Богданова М.С., редакторы Методы культивирования клеток СПб: Изд Политехнического университета; 2008. с. 72-83.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies