Preand posttranscriptional genetic information modification in muscular dystrophy treatment

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Nowadays, a whole range of genetherapeutic methods is being used to restore a lost protein function due to mutation, a big number of preclinical and clinical studies of potential drugs that may allow to implement an etiotropic approach is being performed. 0ne of the most prevalent and socially significant groups of genetic pathologies is muscular dystrophy, including such diseases as Duchenne muscular dystrophy and dysfelinopathy. Despite a large number of studies in this field, there is no effective method of gene therapy for these diseases yet. This work is intended to review main genetherapeutic methods in myodystrophy treatment, especially pre- and posttranscriptional genetic (biosynthetic) information modification, and analyze most optimal of them.

Full Text

Restricted Access

About the authors

I. A Yakovlev

Human Stem Cells Institute; Kazan (Volga region) Federal University

Moscow, Russia; Kazan, Russia

R. V Deev

Human Stem Cells Institute; Kazan (Volga region) Federal University

Moscow, Russia; Kazan, Russia

V. V Solovyeva

Kazan (Volga region) Federal University

Kazan, Russia

A. A Rizvanov

Kazan (Volga region) Federal University

Kazan, Russia

A. A Isaev

Human Stem Cells Institute

Moscow, Russia


  1. Aoki M. Dysferlinopathy. In: Pagon R.A., Adam M.P., Ardinger H.H. et al., editors. Gene Reviews. Seattle (WA): University of Washington; 2015.
  2. DMD Gene [Protein Coding) = DMD.
  3. Reinhard W., Russell S.J., Curiel D. Engineering targeted viral vectors for gene therapy. Nature Reviews Genetics 2007; 8: 573-87.
  4. Azakir B., Di Fulvio S. Modular dispensability of dysferlin C2 domains reveals rational design for mini-dysferlin molecules. J. Biol. Chem. 2012; 287(33): 27629-36.
  5. Aartsma-Rus A., Singh K.H., Fokkema I.F. et al. Therapeutic exon skipping for dysferlinopathies? Eur. J. Hum. Genet. 2010; 18(8): 889-94.
  6. Wein N., Avril A., Bartoli M. et al. Efficient bypass of mutations in dysferlin deficient patient cells by antisense-induced exon skipping. Hum. Mutat. 2010; 31(2): 136-42.
  7. Sauer B. Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol. Cell Biol. 1987; 7(6): 2087-96.
  8. Orban P.C., Chui D., Marth J.D. Tissue- and site-specific DNA recombination in transgenic mice. PNAS USA 1992; 89(15): 6861-5.
  9. Beerli R.R., Segal D.J., Dreier B. et al. Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. PNAS USA 1998; 95(25): 14628-33.
  10. Moscou M.J., Bogdanove A.J. A simple cipher governs DNA recognition by TAL effectors. Science 2009; 326(5959): 1501.
  11. Boch J., Scholze H., Schornack S. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009; 326(5959): 1509-12.
  12. Perez-Pinera P., Kocak D.D., Vockley C.M. et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods. 2013; 10: 973.
  13. Cornu T., Thibodeau-Beganny S., Guhl E. et al. DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases molecular therapy. Mol. Ther. 2008; 16(2): 352-8.
  14. Owens J.B. Urschitz J., Stoytchev I. et al. Chimeric piggyBac transposases for genomic targeting in human cells. Nucleic Acids Res. 2012; 40: 6978-91.
  15. Mali P., Yang L., Esvelt K.M. et al., RNA-guided human genome engineering via Cas9. Science 2013; 339(6121): 823-6.
  16. Caplan A., Parent B., Shen M. et al. No time to waste - the ethical challenges created by CRISPR. EMBO reports 2015; 16: 1421-6.
  17. Koller U., Wally V., Baue J. et al. Considerations for a successful RNA trans-splicing repair of genetic disorders. Mol. Ther. Nucleic Acids 2014; 3(4): e157.
  18. Kôsa M., Zador E. Transfection efficiency along the regenerating soleus muscle of the rat. Mol. Biotech. 2013; 54(2): 220-7.
  19. Nishikawa M., Huang L. Nonviral vectors in the new millennium: delivery barriers in gene transfer. Hum. Gene Ther. 2001; 12(8): 861-70.
  20. Herweijer H., Zhang G., Subbotin V.M. et al. Time course of gene expression after plasmid DNA gene transfer to the liver. J. Gene Med. 2001; 3(3): 280-91.
  21. Zhang G., Ludtke J.J., Thioudellet C. et al. Intraarterial delivery of naked plasmid DNA expressing full-length mouse dystrophin in the mdx mouse model of duchenne muscular dystrophy. Hum. Gene Ther. 2004; 15(8): 770-82.
  22. Romero N.B., Braun S., Benveniste O. et al. Phase I study of dystrophin plasmid-based gene therapy in Duchenne/Becker muscular dystrophy. Hum. Gene Ther. 2004; 15(11): 1065-76.
  23. Bouard D., Alazard-Dany N., Cosset F-L. Viral vectors: from virology to transgene expression. Br. J. Pharmacol. 2009; 157(2): 153-65.
  24. Lostal W., Bartoli M., Bourg N. et al. Efficient recovery of dysferlin deficiency by dual adeno-associated vector-mediated gene transfer. Hum. Mol. Genet. 2010; 19(10): 1897-907.
  25. Aartsma-Rus A., Fokkema I., Verschuuren J. et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy. Hum. Mutat. 2009; 30(3): 293-9.
  26. Prakash V., Moore M., Yanez-Munoz R.J. Current progress in therapeutic gene editing for monogenic diseases. Mol. Ther. 2016; 24(3): 465-74.
  27. Southwell A.L., Skotte N.H., Bennett C.F. at al. Antisense oligonucleotide therapeutics for inherited neurodegenerative diseases. Trends Mol. Med. 2012; 18: 634-43.
  28. Wang Z., Xiao X., Van Nostrand E. et al. General and specific functions of exonic splicing silencers in plicing control. Molecular Cell. 2006; 23(1): 61-70.
  29. Siva K., Covello G., Denti M.A. Exon-skipping antisense oligonucleotides to correct missplicing in neurogenetic diseases nucleic acid therapeutics. 2014; 24(1): 70.
  30. Dhir A., Buratti E. Alternative splicing: role of pseudoexons in human disease and potential therapeutic strategies. FEBS J. 2010; 277(4): 841-55.
  31. Saleh A.F., Arzumanov A.A., Gait M.J. Overview of alternative oligonucleotide chemistries for exon skipping. In: Exon Skipping. Aartsma-Rus A., editor. Methods Mol. Biol. (2012), 365-78.
  32. van Deutekom J.C., Bremmer-Bout M., Janson A.A. et al. Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells. Hum. Mol. Genet. 2001; 10: 15471554.
  33. Lu Q.L., Yokota T., Takeda S. et al. The status of exon skipping as a therapeutic approach to Duchenne muscular dystrophy. Therapy 2011; 19(1): 9-15.
  34. Betts C., Saleh A.F., Arzumanov A.A. et al. Pip6-PMO, a new generation of peptide-oligonucleotide conjugates with improved cardiac exon skipping activity for DMD treatment. Mol. Ther. Nucleic Acids 2012; 1(8): e38.
  35. Yin H., Saleh A.F., Betts C. et al. Pip5 transduction peptides direct high efficiency oligonucleotide-mediated dystrophin exon skipping in heart and phenotypic correction in mdx mice. Mol. Ther. 2011; 19(7): 1295-303.
  36. Wu B., Lu P., Cloer C. et al., Long-term rescue of dystrophin expression and improvement in muscle pathology and function in dystrophic mdx mice by peptide-conjugated morpholino. Am. J. Pathol. 2012; 181(2): 392-400.
  37. Oligonucleotide based therapeutics. tricyclo-dna_platform.html.
  38. Goyenvalle A., Griffith G., Babbs A. et al., Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat. Med. 2015; 21(3): 270-5.
  39. Järver P., O'Donovan L., Gait M.J. A chemical view of oligonucleotides for exon skipping and related drug applications. Nucleic Acid Ther. 2014; 24(1): 37-47.
  40. Veltrop M., Aartsma-Rus A. Antisense-mediated exon skipping: Taking advantage of a trick from Mother Nature to treat rare genetic diseases. Exp. Cell Res. 2014; 325(1): 50-5.
  41. Cavalieri S., Pozzi E., Gatti R.A. et al. Deep-intronic ATM mutation detected by genomic resequencing and corrected in vitro by antisense morpholino oligonucleotide (AMO). Eur. J. Hum. Genet. 2013; 21(7): 774-8.
  42. Pros E., Fernândez-Rodriguez J., Canet B. et al. Antisense therapeutics for neurofibromatosis type 1 caused by deep intronic mutations. Hum. Mutat. 2009; 30(3): 454-62.
  43. Castellanos E., Rosas I., Solanes A. et al. In vitro antisense therapeutics for a deep intronic mutation causing Neurofibromatosis type 2. Eur. J. Hum. Genet. 2013; 21(7): 769-73.
  44. Vega A.I., Pérez-Cerda C., Desviat L.R. et al. Functional analysis of three splicing mutations identified in the PMM2 gene: toward a new therapy for congenital disorder of glycosylation type Ia. Hum. Mutat. 2009; 30(5): 795-803.
  45. Rodriguez-Pascau L., Coll M.J., Vilageliu L. et al. Antisense oligonucleotide treatment for a pseudoexon-generating mutation in the NPC1 gene causing Niemann-Pick type C disease. Hum. Mutat. 2009; 30(11): e993-e1001.
  46. Mancini C., Vaula G., Scalzitti L. et al. Megalencephalic leukoencephalopathy with subcortical cysts type 1 (MLC1) due to a homozygous deep intronic splicing mutation (c.895-226T>G) abrogated in vitro using an antisense morpholino oligonucleotide. Neurogenetics 2012; 13(3): 205-14.
  47. Regis S., Corsolini F., Grossi S. et al. Restoration of the normal splicing pattern of the PLP1 gene by means of an antisense oligonucleotide directed against an exonic mutation. PLoS One 2013; 8(9): e73633.
  48. Siva K., Covello G., Denti M.A. Exon-skipping antisense oligonucleotides to correct missplicing in neurogenetic diseases nucleic acid therapeutics. Nucleic Acid Ther. 2014; 24(1): 69-86.
  49. Peacey E., Rodriguez L., Liu Y. et al. Targeting a pre-mRNA structure with bipartite antisense molecules modulates tau alternative splicing. Nucleic Acids Res. 2012; 40: 9836-49.
  50. Shi S., Cai J., de Gorter D.J. et al. Antisense-oligonucleotide mediated exon skipping in activin-receptor-like kinase 2: inhibiting the receptor that is overactive in fibrodysplasia ossificans progressive. PLoS One 2013; 8(7): e69096.
  51. England S.B., Nicholson L.V., Johnson M.A. et al. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature 1990; 343: 180-2.
  52. Aartsma-Rus A., Van Ommen G-J.B. Antisense-mediated exon skipping: A versatile tool with therapeutic and research applications. RNA 2007; 13: 1609-24.
  53. Peripheral and Central Nervous System Drugs Advisory Committee Meeting. November 24, 2015. Drisapersen FDA Briefing Document. November 24, 2015.
  54. Mitchell L.G., McGarrity G.J. Gene therapy progress and prospects: reprograming gene expression by trans-splicing. Gene Therapy 2005; 12: 1477-85.
  55. Wally V., Murauer E.M., Bauer J.W. Spliceosome-mediated trans-splicing: the therapeutic cut and paste. J. Invest. Dermatol. 2012; 132: 1959-66.
  56. Truong D.J., Kühner K., Kühn R. Development of an intermediated split-Cas9 system for gene therapy. Nucleic Acids Res. 2015; 43(13): 6450-8.
  57. Faustino N.A., Cooper T.A. Pre-mRNA splicing and human disease. Genes Dev. 2003; 17: 419-37.
  58. Finta C., Zaphiropoulos P.G. Intergenic mRNA molecules resulting from trans-splicing. J. Biol. Chem. 2002; 277: 5882-90.
  59. Kikumori T., Cote G.J., Gagel R.F. Naturally occurring heterologous trans-splicing of adenovirus RNA with host cellular transcripts during infection. FEBS Lett 2002; 522: 41-6.
  60. Chen H.Y., Kathirvel P., Yee W.C. et al. Correction of dystrophia myotonica type 1 pre-mRNA transcripts by artificial transsplicing. Gene Therapy 2009; 16: 211-7.
  61. Yang Y., Walsh C.E. Spliceosome-mediated RNA trans-splicing. Molecular Therapy 2005; 12(6): 1006-12.
  62. Puttaraju M., Jamison S.F., Mansfield S.G. et al. Spliceosome-mediated RNA trans-splicing as a tool for gene therapy. Nat. Biotechnol. 1999; 17: 246-52.
  63. Mansfield S.G., Clark R.H., Puttaraju M. et. al. 5' exon replacement and repair by spliceosome-mediated RNA trans-splicing. RNA 2003: 9; 1290-7.
  64. Mansfield S., Kole J., Puttaraju M. et al. Repair of CFTR mRNA by spliceosome-mediated RNA trans-splicing. Gene Therapy 2000; 7(22): 1885-95.
  65. Liu X., Luo M., Zhang L.N. et al. Spliceosome-mediated RNA trans-splicing with recombinant adeno-associated virus partially restores cystic fibrosis transmembrane conductance regulator function to polarized human cystic fibrosis airway epithelial cells. Hum. Gene Ther. 2005; 16: 1116-23.
  66. Chao H., Mansfield S.G., Bartel R.C. et al. Phenotype correction of hemophilia A mice by spliceosome-mediated RNA transsplicing. Nat. Med. 2003; 9(8): 1015-9.
  67. Wally V. Brunner M., Lettner T. et al. K14 mRNA reprogramming for dominant epidermolysis bullosa simplex. Hum. Mol. Genet. 2010; 19: 4715-25.
  68. Coady T.H., Lorson C.L. Trans-splicing-mediated improvement in a severe mouse model of spinal muscular atrophy. J. Neurosci. 2010; 30: 126-30.
  69. Shababi M., Glascock J., Lorson C.L. Combination of SMN trans-splicing and a neurotrophic factor increases the life span and body mass in a severe model of spinal muscular atrophy. Hum. Gene. Ther. 2011; 22: 135-44.
  70. Wang J., Mansfield S.G., Cote C.A. et al. Trans-splicing into highly abundant albumin transcripts for production of therapeutic proteins in vivo. Mol. Ther. 2009; 17(2): 343-51.
  71. Patrick M., Puttaraju M., DiPasquale J. et al. Optimizing the efficacy of spliceosome-mediated RNA trans-splicing (SMaRT) for suicide gene therapy of cervical cancer molecular therapy. Mol. Ther. 2005; 11: S115.
  72. Puttaraju M., DiPasquale, J., Baker C.C. Messenger et al. RNA repair and restoration of protein function by spliceosome-mediated RNA trans-splicing. Mol. Ther. 2001; 4: 105-14.
  73. Bhaumik S., Walls Z., Puttaraju M. et al. Molecular imaging of gene expression in living subjects by spliceosome-mediated RNAtrans-splicing. PNAS USA 2004; 101: 8693-8.
  74. Ривер Ф., Майер П., Вальтер-Леви У. И др. [River F., Meyer P., Walther-Louvie U. et al.] Врожденные мышечные дистрофии: классификация и диагностика. Нервно-мышечные болезни. 2014; 1: 6-19.
  75. Prakash V., Moore M., Yanez-Muno R.J., Current progress in therapeutic gene editing for monogenic diseases. Mol. Ther. 2016;24(3): 465-74.
  76. Volker S., De Waele L., Barresi R. Plasma Membrane Proteins: Dysferlin, Caveolin, PTRF /Cavin, Integrin a7, and Integrin a9. In: Goebel H.H., Sewry, C.A., Weller R.O., editors Muscle disease: pathology and genetics. 2nd ed. Basel: Neuropath Press 2013: 108-18.
  77. Cai C., Weisleder N., Ko J.K. Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, caveolin-3, and dysferlin. J. Biol. Chem. 2009; 284(23): 15894-902.
  78. de Morrée A., Hensbergen P.J., van Haagen H.H. et al. Proteomic Analysis of the Dysferlin Protein Complex Unveils Its Importance for Sarcolemmal Maintenance and Integrity. PLoS One 2010; 5(11): e13854.
  79. Anderson L.V., Davison K., Moss J.A. et al. Dysferlin is a plasma membrane protein and is expressed early in human development. Hum. Mol. Genet. 1999; 8(5): 855-61.
  80. Bashir R., Britton S., Strachan T., et al. A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat. Genet. 1998; 20(1): 37-42.
  81. Bansal D., Miyake K., Vogel S.S. Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 2003; 423(6936): 168-72.
  82. Старостина И. Г., Соловьева В. В., Юрьева К. С. и др. Дисферлинопатии: возможности диагностики, моделирования и генно-клеточной терапии. Гены и клетки 2013; 3(VIII): 61-71.
  83. Деев Р.В., Мавликеев М.О., Бозо И.Я. и др. Генно-клеточная терапия наследственных заболеваний мышечной системы: современное состояние вопроса. Гены и Клетки 2014: 4(IX): 6-33.
  84. Meregalli M., Farini A., Torrente Y. Combining stem cells and exon skipping strategy to treat muscular dystrophy. Expert Opin. Biol. Ther. 2008; 8(8): 1051-61.
  85. Wein N., Avril A., Bartoli M. et al. Efficient bypass of mutations in dysferlin deficient patient cells by anti-sense-induced exon skipping. Hum. Mutat. 2010; 31: 136-42.
  86. Bartoli M., Chapoton M., Mathieu Y. et al. Therapeutic exon skipping for LGMD2B. Myology 2016. 2016; 56.
  87. Monjaret F., Bourg N., Suel L. et al. Cis-splicing and translation of the pre-trans-splicing molecule combine with efficiency in spliceosome mediated RNA trans-splicing molecular therapy. 2014; 6(22): 1176-87.
  88. Philippi S., Lorain S., Beley C. et al. Dysferlin rescue by spliceosome-mediated pre-mRNA trans-splicing targeting introns harbouring weakly defined 3' splice sites. Hum. Mol. Gen. 2015; 24(14): 4049-60.
  89. Старостина И.Г., Соловьева В.В., Шевченко К.Г. и др. Создание рекомбинантного аденовируса, кодирующего кодон-оптимизированный ген дисферлина, и анализ экспрессии рекомбинантного белка в культуре клеток in vitro. Гены и клетки 2012; 3: 25-8.
  90. Allocca M., Doria M., Petrillo M. et al. Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J. Clin. Invest. 2008; 118: 1955-64.
  91. Pryadkina M., Lostal W., Bourg N. et al. A comparison of AAV strategies distinguishes overlapping vectors for efficient systemic delivery of the 6.2 kb dysferlin coding sequences. Mol. Ther. 2015; 2: 1-12.
  92. Escobar H., Schöwel V., Spule S. et al. Full-length dysferlin transfer by the hyperactive sleeping beauty transposase restores dysferlin-deficient muscle. Mol. Ther. 2016; 5: 1-9.
  93. Nelson C.E., Hakim C.H., Ousterout D.G. et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 2016; 351(6271): 403-7.

Copyright (c) 2016 Eco-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 85657 от 21.07.2023 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies