The effects of co-culture duration of cord blood cells with adipose tissue-derived stromal cells on hematopoietic precursors> amplification

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Umbilical cord blood is considered as a valuable source of hematopoietic stem and progenitor cells (CB-HSPCs). The number of latter may be significantly enriched with ex vivo expansion. Thus, the optimization of culture conditions is essential for in vitro manipulations. Recently we have demonstrated that CB-HSPCs may be separated from unmanipulated CB nucleated cells through the adhesion to adipose tissue-derived MSCs. Further coculture was resulted in raizing of new polulation of floating CB-HSPCs significantly ehriched in primitive progentors The goal of this study was to optimize above mentioned protocol To determine the optimal conditions for adhesion and multiplication of CB-HSPCs, nucleated CB cells were co-cultured on adipose-tissue MSC layer for short (1-3 hours) and long-term (24-72 hours) duration Unattached cells were removed, adherent CB-HSPCs were further cultured for 72 hours, resulted in formation of floating population of CB-HSPCs. in each time point the number of attached CB-HSPCs, newly formed floating CB-HSPCs, CD34+ cells and CFUs among latter was examined. After 72 hours of nucleated CB cells co-culture, the number of adherent CD34+ cells peaked and was over than 70% of total CD34+ cells among nucleated CB cell samples Proposed experimental design has provided 4-fold enrichment of primitive CD34+ and 6-fold of CFUs number among newly formed HSPCs. BFU-Es comprised 80-90% of total CFUs regardless of time of nucleated CB cells coculture. Thus, 3 days of nucleated CB cells/adipose tissue-derived mesenchymal stromal cells co-culture provided peak of CD34+ cells' adhesion, amplification of latter resulted in rising of population maximally enriched both with undifferentiated and committed hematopoietic precursors

Full Text

Restricted Access

About the authors

E. R Andreeva

Institute of Biomedical Problems, Russian Academy of Sciences


I. V Andrianova

Institute of Biomedical Problems, Russian Academy of Sciences; Institute of Experimental Cardiology, Cardiology Research Center

A. N Gornostaeva

Institute of Biomedical Problems, Russian Academy of Sciences

P. I Bobyleva

Institute of Biomedical Problems, Russian Academy of Sciences

E. E Balashova

Institute of Experimental Cardiology, Cardiology Research Center; Cord Blood Bank “CryoCenter,"

L. B Buravkova

Institute of Biomedical Problems, Russian Academy of Sciences


  1. Broxmeyer H.E., Srour E.F., Hangoc G. et al. High-efficiency recovery of functional hematopoietic progenitor and stem cells from human cord blood cryopreserved for 15 years. PNAS USA 2003; 100(2): 645-50.
  2. Gluckman E., Ruggeri A., Rocha V. et al. Family-directed umbilical cord blood banking. Haematologica 2011; 96(11); 1700-7.
  3. Andrade P.Z., Santos F.D., Cabral J.M. et al. Stem cell bioengineering strategies to widen the therapeutic applications of haematopoietic stem/progenitor cells from umbilical cord blood. J. Tissue Eng. Regen. Med. 2015; 9(9): 988-1003.
  4. Дмитриева Р.И., Анисимов С.В. Возможности экспансии гемопоэтических стволовых клеток in vitro. Цитология 2013; 55(1): 11-5.
  5. Романов Ю.А., Балашова Е.Е., Быстрых О.А. и др. Пуповинная кровь для аутологичной трансфузии в раннем постнатальном периоде: анализ клеточного состава и жизнеспособности клеток при длительном хранении. Клеточные технологии в биологии и медицине 2014; 4: 207-11.
  6. Brunstein C.G., Wagner J.E. Cord blood transplantation for adults. Vox Sanguinis 2006; 91: 195-205
  7. Hofmeister C.C., Zhang J., Knight K.L. et al. Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche. Bone Marrow Transplant. 2007; 39(1): 11-23.
  8. Уфимцева А.И., Канов Е.В. Характеристика и ex vivo экспансия гемопоэтических стволовых и прогениторных клеток пуповинной крови Клеточная трансплантология и тканевая инженерия 2012; 7(4): 21-7.
  9. Шаманская Т.В., Осипова Е.Ю., Румянцев С.А. Ex vivo экспансия гемопоэтических стволовых клеток пуповинной крови Онкогематология 2012; 7(1): 35-44.
  10. Robinson S., Niu T., de Lima M. et al. Ex vivo expansion of umbilical cord blood Cytotherapy 2005; 7(3): 243-50
  11. Петёвка Н.В., Гончарова Н.В., Северин И.Н. и др. Пролиферация и дифференцировка предшественников миелоидного ростка кроветворения пуповинной крови человека при экспансии in vitro Клеточная трансплантология и тканевая инженерия 2012; 7(1): 40-8.
  12. Zanjani E.D., Almeida-Porada G., Livingston A.G. et al. Reversible expression of CD34 by adult human bone marrow long-term engrafting hematopoietic stem cells. Exp. Hematol. 2003; 31(5): 406-12.
  13. Маслова Е.В., Андреева Е.Р., Андрианова И.В. и др. Обогащение мононуклеаров пуповинной крови гемопоэтическими клетками-предшественниками в совместной культуре с мезенхимальными стромальными клетками жировой ткани человека Клеточные технологии в биологии и медицине 2013; 4: 238-43.
  14. Romanov Y.A., Tarakanov O.P., Radaev S.M. et al. Human allogeneic AB0/Rh-identical umbilical cord blood cells in the treatment of juvenile patients with cerebral palsy. Cytotherapy 2015; 17(7): 969-78
  15. Zuk P.A., Zhu M., Mizuno H. et al. Multilineage cells from human adipose tissue: implications for cell-based therapies Tissue Eng. 2001; 7(2): 211-28.
  16. Буравкова Л.Б., Гринаковская О.С., Андреева Е.Р. и др. Характеристика мезенхимных стромальных клеток из липоаспирата человека, культивируемых при пониженном содержании кислорода Цитология 2009; 51(1): 5-11.
  17. Krause D.S., Fackler M.J., Civin C.I. et al. CD34: structure, biology, and clinical utility. Blood. 1996; 87(1): 1-13.
  18. Sutherland D.R., Anderson L., Keeney M. et al. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering J Hematother. 1996; 5(3): 213-26.
  19. Wagner W., Wein F., Roderburg C. et al. Adhesion of hematopoietic progenitor cells to human mesenchymal stem cells as a model for cell-cell interaction. Exp. Hematol. 2007; 35(2): 314-25.
  20. Madhusudhan T., Richhariya A., Majumdar S.S. et al. An in vitro model for grafting of hematopoietic stem cells predicts bone marrow reconstitution of myeloablative mice J. Hematother Stem Cell Res. 2003; 12(2): 243-52.
  21. Frimberger A.E., Stering A.I., Quesenberry P.J. An in vitro model of hematopoietic stem cell homing demonstrates rapid homing and maintenance of engraftable stem cells. Blood 2001; 98(4): 1012-8.
  22. Jing D., Fonseca A.V., Alakel N. et al. Hematopoietic stem cells in co-culture with mesenchymal stromal cells--modeling the niche compartments in vitro. Haematologica 2010; 95(6): 542-50.
  23. da Silva C.L., Gonçalves R., dos Santos F. et al. Dynamic cell-cell interactions between cord blood haematopoietic progenitors and the cellular niche are essential for the expansion of CD34+, CD34+CD38- and early lymphoid CD7+ cells. J. Tissue Eng. Regen. Med. 2010; 4(2): 149-58.

Copyright (c) 2016 Eco-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 85657 от 21.07.2023 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies