The natural and synthetic polymers of the non-lipid origin in gene delivery

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


For effective transfection of the eukaryotic cells with the complexes of non-viral gene carriers and plasmids it is necessary to run a number of obstacles so as a gene construction could enter a cellular nucleus and function there successfully and long. Chemical structure of a vector has the crucial importance for the targeted complex delivery to the desired organ. At present polymers of the non-lipid origin are more and more used for gene delivery along with the lipid vectors. In the review advantages and imperfections of some classes of these less used vectors are elucidated depending on their modifications and ratio to DNA and route of the delivery. We concluded that the significant advance in a task of obtaining the effective and safe vector for the human non-viral gene delivery has not been observed yet in spite of designing more and more novel variants of the gene carriers and the new kinds of the plasmids.

Full Text

Restricted Access

About the authors

E. V Bogdanenko

Research Institute of General Pathology and Pathophysiology

R. I Zhdanov

Moscow Pedagogical State University; Kazan (Volga region) Federal University; Moscow, Russia

Kazan, Russia


  1. Nomoto T., Matsumoto Y., Miyata K. et al. In situ quantitative monitoring of polyplexes and polyplex micelles in the blood circulation using intravital real-time confocal laser scanning microscopy. J. Control. Release 2011; 151(2): 104-9.
  2. Takano S., Aramaki Y., Tsuchiya S. Physicochemical properties of liposomes affecting apoptosis induced by cationic liposomes in macrophages. Pharm. Res. 2003; 20(7): 962-68.
  3. Lee M., Kim S.W. Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm. Res. 2005; 22(1): 1-10.
  4. Hofland H.E., Masson C., Iginla S. et al. Folate-targeted gene transfer in vivo. Mol. Ther. 2002; 5(6): 739-44.
  5. Pun S.H., Davis M.E. Development of a nonviral gene delivery vehicle for systemic application. Bioconjug. Chem. 2002; 13(3): 630-9.
  6. Kaul G., Amiji M. Cellular interactions and in vitro DNA transfection studies with poly(ethylene glycol)-modified gelatin nanoparticles. J. Pharm. Sci. 2005; 94(1): 184-98.
  7. Pardridge W.M. Intravenous, non-viral RNAi gene therapy of brain cancer. Expert Opin. Biol. Ther. 2004; 4(7): 1103-13.
  8. Meyer M., Wagner E. pH-responsive shielding of non-viral gene vectors. Expert Opin. Drug. Deliv. 2006; 3(5): 563-71.
  9. LeHoux J.G., Grondin F. Some effects of chitosan on liver function in the rat. Endocrinology 1993; 132: 1078-84.
  10. Mansouri S., Lavigne P., Corsi K. et al. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur. J. Pharm. Biopharm. 2004; 57(1): 1-8.
  11. Yang F., Cui X., Yang X. Interaction of low-molecular-weight chitosan with mimic membrane studied by electrochemical methods and surface plasmon resonance. Biophys. Chem. 2002; 99(1): 99-106.
  12. Leong K.W., Mao H.Q., Truong-Le V.L. et al. DNA-polycation nanospheres as non-viral gene delivery vehicles. J. Control. Release 1998; 53(1-3): 183-93.
  13. Corsi K., Chellat F., Yahia L. et al. Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles. Biomaterials 2003; 24(7): 1255-64.
  14. Erbacher P., Zou S., Bettinger T. et al. Chitosan-based vector/ DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm. Res. 1998; 15(9): 1332-9.
  15. Jean M., Alameh M., De Jesus D. et al. Chitosan-based therapeutic nanoparticles for combination gene therapy and gene silencing of in vitro cell lines relevant to type 2 diabetes. Eur. J. Pharm. Sci. 2012; 45(1-2): 138-49.
  16. Кривцов Г.Г., Жданов Р.И. Адресная доставка функциональных генов в генотерапии с помощью углеводсодержащих векторов. Вопросы медицинской химии 2000; 46(3): 246-55.
  17. Richardson S.C., Kolbe H.V., Duncan R. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int. J. Pharm. 1999; 178(2): 231-43.
  18. Ishii T., Okahata Y., Sato T. Mechanism of cell transfection with plasmid/chitosan complexes. Biochim. Biophys. Acta. 2001; 1514(1): 51-64.
  19. Koping-Hoggard M., Tubulekas I., Guan H. et al. Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther. 2001; 8(14): 1108-21.
  20. Lee M., Nah J.W., Kwon Y. et al. Water-soluble and low molecular weight chitosan-based plasmid DNA delivery. Pharm. Res. 2001; 18(4): 427-31.
  21. Koping-Hoggard M., Mel'nikova Y.S., Varum K.M. et al. Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene delivery system in vitro and in vivo. J. Gene Med. 2003; 5(2): 130-41.
  22. Onishi H., Machida Y. Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials 1999; 20(2): 175-82.
  23. Ozbas-Turan S., Aral C., Kabasakal L. et al. Co-encapsulation of two plasmids in chitosan microspheres as a non-viral gene delivery vehicle. J. Pharm. Pharm. Sci. 2003; 6(1): 27-32.
  24. Shi Q., Wang H., Tran C. et al. Hydrodynamic delivery of chitosan-folate-DNA nanoparticles in rats with adjuvant-induced arthritis. J. Biomed. Biotechnol. 2011; 2011: 148763.
  25. Koping-Hoggard M., Varum K.M., Issa M. et al. Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene Ther. 2004; 11(19): 1441-52.
  26. Koping-Hoggard M., Tubulekas I., Guan H. et al. Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther. 2001; 8(14): 1108-21.
  27. Zhang X., Duan Y., Wang D. et al. Preparation of arginine modified PEI-conjugated chitosan copolymer for DNA delivery. Carbohydr. Polym. 2015; 122: 53-9.
  28. Gao S., Chen J., Xu X. et al. Galactosylated low molecular weight chitosan as DNA carrier for hepatocyte-targeting. Int. J. Pharm. 2003; 255(1-2): 57-68.
  29. Du Y., Cai L., Li J. et al. Receptor-mediated gene delivery by folic acid-modified stearic acid-grafted chitosan micelles. Int. J. Nanomedicine 2011; 6: 1559-68.
  30. Jeong E.J., Choi M., Lee J. et al. The spacer arm length in cellpenetrating peptides influences chitosan/siRNA nanoparticle delivery for pulmonary inflammation treatment. Nanoscale 2015; 7(47): 20095-104.
  31. Lee M.H., Thomas J.L., Chen J.Z. et al. Activation of tumor suppressor p53 gene expression by magnetic thymine-imprinted chitosan nanoparticles. Chem. Commun. (Camb.) 2016; 52(10): 2137-40.
  32. Ramsey J.D., Flynn N.H. Cell-penetrating peptides transport therapeutics into cells. Pharmacol. Ther. 2015; 154: 78-86.
  33. Layek B., Lipp L., Singh J. Cell penetrating peptide conjugated chitosan for enhanced delivery of nucleic acid. Int. J. Mol. Sci. 2015; 16(12): 28912-30.
  34. Liu X., Tian P., Yu Y. et al. Enhanced antitumor effect of EGF R-targeted p21WAF-1 and GM-CSF gene transfer in the established murine hepatoma by peritumoral injection. Cancer Gene Ther. 2002; 9(1): 100-8.
  35. Liu X., Tian P.K., Ju D.W. et al. Systemic genetic transfer of p21WAF-1 and GM-CSF utilizing of a novel oligopeptide-based EGF receptor targeting polyplex. Cancer Gene Ther. 2003; 10(7): 529-39.
  36. Aoki Y., Hosaka S., Kawa S. et al. Potential tumor-targeting peptide vector of histidylated oligolysine conjugated to a tumor-homing RGD motif. Cancer Gene Ther. 2001; 8(10): 783-87.
  37. Segura T., Shea L.D. Surface-tethered DNA complexes for enhanced gene delivery. Bioconjug. Chem. 2002; 13(3): 621-29.
  38. Nishikawa M., Nakano T., Okabe T. et al. Residualizing indium-111-radiolabel for plasmid DNA and its application to tissue distribution study. Bioconjug. Chem. 2003; 14(5): 955-61.
  39. Dizhe E.B., Akifiev B.N., Missul B.V. et al. Receptor-mediated transfer of DNA-galactosylated poly-L-lysine complexes into mammalian cells in vitro and in vivo. Biochemistry (Mosc.) 2001; 66(1): 55-61.
  40. Kawano T., Okuda T., Aoyagi H. et al. Long circulation of intravenously administered plasmid DNA delivered with dendritic poly(L-lysine) in the blood flow. J. Control. Release 2004; 99(2): 329-37.
  41. Siprashvili Z., Scholl F.A., Oliver S.F. et al. Gene transfer via reversible plasmid condensation with cysteine-flanked, internally spaced arginine-rich peptides. Hum. Gene Ther. 2003; 14(13): 1225-33.
  42. Kichler A., Leborgne C., Marz J. et al. Histidine-rich amphipathic peptide antibiotics promote efficient delivery of DNA into mammalian cells. PNAS USA 2003; 100(4): 1564-68.
  43. Wang X., Tai Z., Tian J. et al. Reducible chimeric polypeptide consisting of octa-D-arginine and tetra-L-histidine peptides as an efficient gene delivery vector. Int. J. Nanomedicine 2015; 10: 4669-90.
  44. Kwok K.Y., Park Y., Yang Y. et al. In vivo gene transfer using sulfhydryl cross-linked PEG-peptide/glycopeptide DNA co-condensates. J. Pharm. Sci. 2003; 92(6): 1174-85.
  45. Lehto T., Simonson O.E., Mager I. et al. A peptide-based pector for efficient gene transfer in vitro and in vivo. Mol. Ther. 2011; 19(8): 1457-67.
  46. Numata K., Reagan M., Goldstein R.H. et al. Spider silk-based gene carriers for tumor cell-specific delivery. Bioconjug. Chem. 2011; 22(8): 1605-10.
  47. Weng L., Liu D., Li Y. et al. An archaeal histone-like protein as an efficient DNA carrier in gene transfer. Biochim. Biophys. Acta 2004; 1702(2): 209-16.
  48. Wang C., Zhang Y. Apoptin gene transfer via modified wheat histone H4 facilitates apoptosis of human ovarian cancer cells. Cancer Biother. Radiopharm. 2011; 26(1): 121-6.
  49. Mokhtarzadeh A., Parhiz H., Hashemi M. P53-Derived peptides conjugation to PEI: an approach to producing versatile and highly efficient targeted gene delivery carriers into cancer cells. Expert. Opin. Drug. Deliv. 2016; 8: 1-15.
  50. Beyerle A., Long A.S., White P.A. et al. Poly(ethylene imine) nanocarriers do not induce mutations nor oxidative DNA damage in vitro in MutaMouse FE1 cells. Mol. Pharm. 2011; 8(3): 976-81.
  51. Chen X., Deng Y. Progress of nanometer vector polyethylenimine applied in gene therapy. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2011; 28(1): 195-8.
  52. Chen H., Cui S., Zhao Y. et al. Grafting chitosan with polyethylenimine in an ionic liquid for efficient gene delivery. PLoS One 2015; 10(4): e0121817.
  53. Huang H.Y., Kuo W.T. et al. Co-delivery of anti-vascular endothelial growth factor siRNA and doxorubicin by multifunctional polymeric micelle for tumor growth suppression. J. Biomed. Mater. Res. A 2011; 97(3): 330-8.
  54. Sung S.J., Min S.H., Cho K.Y. et al. Effect of polyethylene glycol on gene delivery of polyethylenimine. Biol. Pharm. Bull. 2003; 26(4): 492-500.
  55. Wolschek M.F., Thallinger C., Kursa M. et al. Specific systemic nonviral gene delivery to human hepatocellular carcinoma xenografts in SCID mice. Hepatology 2002; 36(5): 1106-14.
  56. Pun S.H., Bellocq N., Liu A. et al. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug. Chem. 2004; 15(4): 831-40.
  57. Cherng J.Y., Hung W.C., Kao H.C. Blending of polyethylenimine with a cationic polyurethane greatly enhances both DNA delivery efficacy and reduces the overall cytotoxicity. Curr. Pharm. Biotechnol. 2011; 12(5): 839-46.
  58. Li X., Xie Z., Xie C. et al. D-SP5 Peptide-modified highly branched polyethylenimine for gene therapy of gastric adenocarcinoma. Bioconjug. Chem. 2015; 26(8): 1494-503.
  59. Dong H., Ding L., Yan F. et al. The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials 2011; 32(15): 3875-82.
  60. Ma K., Shen H., Shen S. et al. Development of a successive targeting liposome with multi-ligand for efficient targeting gene delivery. J. Gene Med. 2011; 13(5): 290-301.
  61. Deng J., Wen Y., Wang C. et al. Efficient intracellular gene delivery using the formulation composed of poly (L-glutamic acid) grafted polyethylenimine and histone. Pharm. Res. 2011; 28(4): 812-26.
  62. Ogris M., Carlisle R.C., Bettinger T. et al. Melittin enables efficient vesicular escape and enhanced nuclear access of nonviral gene delivery vectors. J. Biol. Chem. 2001; 276(50): 47550-5.
  63. Tripathi S.K., Goyal R., Kumar P. et al. Linear polyethylenimine-graft-chitosan copolymers as efficient DNA/siRNA delivery vectors in vitro and in vivo. Nanomedicine 2012; 8(3): 337-45.
  64. Jia S.F., Worth L.L., Densmore C.L. et al. Eradication of osteosarcoma lung metastases following intranasal interleukin-12 gene therapy using a nonviral polyethylenimine vector. Cancer Gene Ther. 2002; 9(3): 260-6.
  65. Abbasi S., Paul A., Prakash S. Investigation of siRNA-Loaded Polyethylenimine-Coated Human Serum Albumin Nanoparticle Complexes for the Treatment of Breast Cancer. Cell Biochem. Biophys. 2011; 61(2): 277-87.
  66. Xue H.Y., Wong H.L. Solid Lipid-PEI hybrid nanocarrier: an integrated approach to provide extended, targeted, and safer siRNA therapy of prostate cancer in an all-in-one manner. ACS Nano 2011; 5(9): 7034-47.
  67. Lu H., Zhang Y., Roberts D.D. et al. Enhanced gene expression in breast cancer cells in vitro and tumors in vivo. Mol. Ther. 2002; 6(6): 783-92.
  68. Liu G., Xie J., Zhang F. et al. N-Alkyl-PEI-Functionalized Iron Oxide Nanoclusters for Efficient siRNA Delivery. Small 2011; 7(19): 2742-9.
  69. Rudolph C., Schillinger U., Plank C. et al. Nonviral gene delivery to the lung with copolymer-protected and transferrin-modified polyethylenimine. Biochim. Biophys. Acta. 2002; 1573(1): 75-83.
  70. Oh Y.K., Kim J.P., Yoon H. et al. Prolonged organ retention and safety of plasmid DNA administered in polyethylenimine complexes. Gene Ther. 2001; 8(20): 1587-92.
  71. Grosse S., Thevenot G., Aron Y. et al. In vivo gene delivery in the mouse lung with lactosylated polyethylenimine, questioning the relevance of in vitro experiments. J. Control Release 2008; 132(2): 105-12.
  72. Zhang X.Q., Wang X.L., Huang S.W. et al. In vitro gene delivery using polyamidoamine dendrimers with a trimesyl core. Biomacromolecules 2005; 6(1): 341-50.
  73. Rodrigo A.C., Rivilla I., Monteagudo S. et al. Efficient, nontoxic hybrid PPV-PAMAM dendrimer as a gene carrier for neuronal cells. Biomacromolecules 2011; 12(4): 1205-13.
  74. Hayashi Y., Higashi T., Motoyama K. et al. Design and evaluation of polyamidoamine dendrimer conjugate with PEG, a-cyclodextrin and lactose as a novel hepatocyte-selective gene carrier in vitro and in vivo. J. Drug Target. 2013; 21(5): 487-96.
  75. Chen Y., Zhou L., Pang Y. et al. Photoluminescent hyperbranched poly(amido amine) containing Oi-cyclodextrin as a nonviral gene delivery vector. Bioconjug. Chem. 2011; 22(6): 1162-70.
  76. Dufes C., Keith W.N., Bilsland A. et al. Synthetic anticancer gene medicine exploits intrinsic antitumor activity of cationic vector to cure established tumors. Cancer Res. 2005; 65(18): 8079-84.
  77. Russ V., Gunther M., Halama A. et al. Oligoethylenimine-grafted polypropylenimine dendrimers as degradable and biocompatible synthetic vectors for gene delivery. J. Control Release 2008; 132(2): 131-40.
  78. Chisholm E.J., Vassaux G., Martin-Duque P. et al. Cancer-specific transgene expression mediated by systemic injection of nanoparticles. Cancer Res. 2009; 69(6): 2655-62.
  79. Schatzlein A.G., Zinselmeyer B.H., Elouzi A. et al. Preferential liver gene expression with polypropylenimine dendrimers. J. Control Release 2005; 101(1-3): 247-58.
  80. Yang T.F., Chin W.K., Cherng J.Y. et al. Synthesis of novel biodegradable cationic polymer: N,N-diethylethylenediamine polyurethane as a gene carrier. Biomacromolecules 2004; 5(5): 1926-32.
  81. Jian Z.Y., Chang J.K., Shau M.D. Synthesis and characterizations of new lysine-based biodegradable cationic poly(urethane-co-ester) and study on self-assembled nanoparticles with DNA. Bioconjug. Chem. 2009; 20(4): 774-9.
  82. Shau M.D., Tseng S.J., Yang T.F. et al. Effect of molecular weight on the transfection efficiency of novel polyurethane as a biodegradable gene vector. J. Biomed. Mater. Res. A 2006; 77(4): 736-46.
  83. Yousefpour Marzbali M., Yari Khosroushahi A., Movassaghpour A. Polyurethane dispersion containing quaternized ammonium groups: An efficient nanosize gene delivery carrier for A549 cancer cell line transfection. Chem. Biol. Interact. 2016; 244: 27-36.
  84. Cheng J., Tang X., Zhao J. et al. Multifunctional cationic polyurethanes designed for non-viral cancer gene therapy. Acta Biomater. 2016; 30: 155-67.
  85. Chiou G.Y., Cherng J.Y., Hsu H.S. et al. Cationic polyurethanes-short branch PEI-mediated delivery of Mir145 inhibited epithelial-mesenchymal transdifferentiation and cancer stem-like properties and in lung adenocarcinoma. J. Control. Release 2012; 159(2): 240-50.
  86. Yang Y.P., Chien Y., Chiou G.Y. et al. Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials 2012; 33(5): 1462-76.
  87. Maeder M.L., Gersbach C.A. Genome-editing technologies for gene and cell therapy. Mol. Ther. 2016; 24(3): 430-46.

Copyright (c) 2016 Eco-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 85657 от 21.07.2023 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies