Adipose-derived stromal vascular fraction as an alternative source of cells for the regenerative medicine

Cover Page

Cite item


The adipose tissue is considered as the most convenient and abundant source of cells for the regenerative medicine. The number of progenitor cells in the adipose tissue significantly exceeds their amount in the bone marrow and other tissues. Therefore, adipose-derived stromal vascular fraction comprising distinct populations of stem and progenitor cells can be relatively easily isolated from lipoaspirates and may then be used in various pathological conditions. However, the profile of this cell fraction with a significant therapeutic potential remains unclear, and there are no standardized protocols for its isolation and evaluation. in this article, we reviewed the data on the potential use of adipose-derived stromal vascular fraction in the regenerative medicine. We described the main historical milestones and performed a comprehensive analysis of the sources of adipose-derived stromal vascular fraction, techniques of its isolation, features, immunophenotype and differentiation pathways

Full Text

Restricted Access

About the authors

Ä. V Veremeev

“JoinTechCeir LLC


R. N Bolgarin

“JoinTechCeir LLC

M. A Petkova

“JoinTechCeir LLC

N. Katz

“JoinTechCeir LLC

V. G Nesterenko

N.F. Gamaleya Federal Research Institute of Epidemiology and Microbiology


  1. Stoltz J.F., de Isla N., Li Y.P. et al. Stem Cells and Regenerative Medicine: Myth or Reality of the 21th Century. Stem Cells Int. 2015; 2015: 734731.
  2. Desai N., Rambhia P., Gishto A. Human embryonic stem cell cultivation: historical perspective and evolution of xeno-free culture systems. Reprod. Biol. Endocrinol. 2015; 13: 9.
  3. Kingham E., Oreffo R.O. Embryonic and induced pluripotent stem cells: understanding, creating, and exploiting the nano-niche for regenerative medicine. ACS Nano 2013; 7(3): 1867-81.
  4. Simonson O.E., Domogatskaya A., Volchkov P. et al. The safety of human pluripotent stem cells in clinical treatment. Ann. Med. 2015; 47(5): 370-80.
  5. Eaves С.J. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 2015; 125(17): 2605-13.
  6. Friedenstein A.J., Petrakova K.V., Kurolesova A.I. et al. Heterotopic of bone marrow Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968; 6(2): 230-47.
  7. Friedenstein A.J., Deriglasova U.F., Kulagina N.N. et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp. Hematol. 1974; 2(2): 83-92.
  8. Mabuchi Y., Houlihan D.D., Akazawa C. et al. Prospective isolation of murine and human bone marrow mesenchymal stem cells based on surface markers. Stem Cells Int. 2013; 2013: 507301.
  9. Pourrajab F., Forouzannia S.K., Tabatabaee S.A. Molecular characteristics of bone marrow mesenchymal stem cells, source of regenerative medicine. Int. J. Cardiol. 2013; 163(2): 125-31.
  10. Vapniarsky N., Arzi B., Hu J.С. et al. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine. Stem Cells Transl. Med. 2015; 4(10): 1187-98
  11. Ullah I., Subbarao R.B., Rho G.J. Human mesenchymal stem cells - current trends and future prospective. Biosci. Rep. 2015; 35(2): e00191.
  12. Bara J.J., Richards R.G., Alini M. et al. Concise review: Bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells 2014; 32(7): 1713-23.
  13. Liao H.T., Chen С.T. Osteogenic potential: Comparison between bone marrow and adipose-derived mesenchymal stem cells. World J. Stem Cells 2014; 6(3): 288-95.
  14. Johal K.S., Lees V.С., Reid A.J. Adipose-derived stem cells: selecting for translational success. Regen. Med. 2015; 10(1): 79-96.
  15. Mizuno H., Tobita M., Uysal A.С. Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine Stem Cells 2012; 30(5): 804-10.
  16. Huang S.J., Fu R.H., Shyu W.C. et al. Adipose-derived stem cells: isolation, characterization, and differentiation potential. Cell Transplant. 2013; 22(4): 701-9.
  17. Uzbas F., May I.D., Parisi A.M. et al. Molecular physiognomies and applications of adipose-derived stem cells. Stem Cell Rev. 2015; 11(2): 298-308.
  18. Gentile P., Orlandi A., Scioli M.G. et al. Concise review: adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical implications for tissue engineering therapies in regenerative surgery. Stem Cells Transl. Med. 2012; 1(3): 230-6.
  19. Doi K., Tanaka S., Iida H. et al. Stromal vascular fraction isolated from lipo-aspirates using an automated processing system: bench and bed analysis. J. Tissue Eng. Regen. Med. 2013; 7(11): 864-70
  20. Zhu M., Heydarkhan-Hagvall S., Hedrick M. et al. Manual isolation of adipose-derived stem cells from human lipoaspirates J. Vis. Exp. 2013; (79): e50585.
  21. Zuk P.A., Zhu M., Mizuno H. et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001; 7(2): 211-28.
  22. Fang X., Murakami H., Demura S. et al. A novel method to apply osteogenic potential of adipose derived stem cells in orthopaedic surgery. PLoS One 2014; 9(2): e88874.
  23. Garcia-Contreras M., Vera-Donoso С.D., Hernandez-Andreu J M et al. Therapeutic potential of human adipose-derived stem cells (ADSCs) from cancer patients: a pilot study. PLoS One 2014; 9(11): e113288.
  24. Guan J.J., Niu X., Gong F.X. et al. Biological characteristics of human-urine-derived stem cells: potential for cell-based therapy in neurology. Tissue Eng. Part A 2014; 20(13-14): 1794-806.
  25. Peterson J.R., Eboda O., Agarwal S. et al. Targeting of ALK2, a receptor for bone morphogenetic proteins, using the Cre/lox System to enhance osseous regeneration by adipose-derived stem cells Stem Cells Transl. Med. 2014; 3(11): 1375-80.
  26. Hong S.J., Jia S.X., Xie P. et al. Topically delivered adipose derived stem cells show an activated-fibroblast phenotype and enhance granulation tissue formation in skin wounds. PLoS One 2013; 8(1): e55640.
  27. Kim I., Bang S.I., Lee S.K. et al. Clinical implication of allogenic implantation of adipogenic differentiated adipose-derived stem cells Stem Cells Transl. Med. 2014; 3(11): 1312-21.
  28. Tomita K., Madura T., Sakai Y. et al. Glial differentiation of human adipose-derived stem cells: implications for cell-based transplantation therapy. Neuroscience 2013; 236: 55-65.
  29. Neuber F. Fetttransplantation Bericht uber die verhandlungen der deutschen gesellschaft fur chirurgie. Zbl. Chir. 1893; 22: 66.
  30. Tran T.T., Kahn C.R. Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat. Rev. Endocrinol. 2010; 6(4): 195-213.
  31. Mazzola R.F., Mazzola I.С. History of fat grafting: from ram fat to stem cells. Clin. Plast. Surg. 2015; 42(2): 147-53.
  32. De Francesco F., Ricci G., D'Andrea F. et al. Human Adipose Stem Cells: From Bench to Bedside. Tissue Eng. Part B Rev. 2015; 21(6): 572-84
  33. Minteer D.M., Marra K.G., Rubin J.P. Adipose stem cells: biology, safety, regulation, and regenerative potential Clin Plast Surg. 2015; 42(2): 169-79.
  34. Lim M.H., Ong W.K., Sugii S. The current landscape of adipose-derived stem cells in clinical applications. Expert Rev. Mol. Med. 2014; 16: e8.
  35. Gir P., Oni G., Brown S.A. et al. Human adipose stem cells: current clinical applications. Plast. Reconstr. Surg. 2012; 129(6): 1277-90
  36. Qureshi A.T., Chen С., Shah F. et al. Human adipose-derived stromal/stem cell isolation, culture, and osteogenic differentiation Methods Enzymol. 2014; 538: 67-88.
  37. Doi K., Kuno S., Kobayashi A. et al. Enrichment isolation of adipose-derived stem/stromal cells from the liquid portion of liposuction aspirates with the use of an adherent column Cytotherapy 2014; 16(3): 381-91.
  38. Buehrer B.M., Cheatham B. Isolation and characterization of human adipose-derived stem cells for use in tissue engineering Methods Mol. Biol. 2013; 1001: 1-11.
  39. Yu G., Floyd Z.E., Wu X. et al. Isolation of human adipose-derived stem cells from lipoaspirates. Methods Mol. Biol. 2011; 702: 17-27.
  40. Güven S., Karagianni M., Schwalbe M. et al. Validation of an automated procedure to isolate human adipose tissue-derived cells by using the Sepax® technology. Tissue Eng. Part С Methods 2012; 18(8): 575-82.
  41. Williams S.K., Kosnik P.E., Kleinert L.B. et al. Adipose stromal vascular fraction cells isolated using an automated point of care system improve the patency of expanded polytetrafluoroethylene vascular grafts. Tissue Eng. Part A 2013; 19(11-12): 1295-302.
  42. Fraser J.K., Hicok K.С., Shanahan R. et al. The Celution® System: automated processing of adipose-derived regenerative cells in a functionally closed system. Adv. Wound Care (New Rochelle) 2014; 3(1): 38-45.
  43. SundarRaj S., Deshmukh A., Priya N. et al. Development of a system and method for automated isolation of stromal vascular fraction from adipose tissue lipoaspirate. Stem Cells Int. 2015; 2015: 109353
  44. Cleveland E.С., Albano N.J., Hazen A. Roll, spin, wash, or filter? Processing of lipoaspirate for autologous fat grafting: an updated, evidence-based review of the literature. Plast. Reconstr. Surg. 2015; 136(4): 706-13.
  45. Bourin P., Bunnell B.A., Casteilla L. et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013; 15(6): 641-8.
  46. Zimmerlin L., Donnenberg V.S., Rubin J.P. et al. Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A 2013; 83(1): 134-40.
  47. Zimmerlin L., Donnenberg V.S., Pfeifer M.E. et al. Stromal vascular progenitors in adult human adipose tissue. Cytometry A 2010; 77(1): 22-30.
  48. Mitchell J.B., Mcintosh K., Zvonic S. et al. immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 2006; 24(2): 376-85.
  49. Navarro A., Marin S., Riol N. et al. Human adipose tissue-resident monocytes exhibit an endothelial-like phenotype and display angiogenic properties. Stem Cell Res. Ther. 2014; 5(2): 50.
  50. Yoshimura K., Shigeura T., Matsumoto D. et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J. Cell. Physiol. 2006; 208(1): 64-76.
  51. Varma M.J. , Breuls R.G., Schouten T.E. et al. Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev. 2007; 16(1): 91-104.
  52. Kapur S.K., Katz A.J. Review of the adipose derived stem cell secretome. Biochimie 2013; 95(12): 2222-8.
  53. Chiellini C., Cochet O., Negroni L. et al. Characterization of human mesenchymal stem cell secretome at early steps of adipocyte and osteoblast differentiation. BMC Mol. Biol. 2008; 9: 26.
  54. Tajiri N., Acosta S.A., Shahaduzzaman M. et al. intravenous transplants of human adipose-derived stem cell protect the brain from traumatic brain injury-induced neurodegeneration and motor and cognitive impairments: cell graft biodistribution and soluble factors in young and aged rats. J. Neurosci. 2014; 34(1): 313-26.
  55. Lee S.C., Jeong H.J., Lee S.K. et al. Lipopolysaccharide preconditioning of adipose-derived stem cells improves liver-regenerating activity of the secretome. Stem Cell Res. Ther. 2015; 6: 75.
  56. Crop M.J., Baan C.C., Korevaar S.S. et al. Human adipose tissue-derived mesenchymal stem cells induce explosive T-cell proliferation. Stem Cells Dev. 2010; 19(12): 1843-53.
  57. Cohen C.A., Shea A.A., Heffron C.L. et al. intra-abdominal fat depots represent distinct immunomodulatory microenvironments: a murine model. PLoS One 2013; 8(6): e66477.
  58. Schweizer R., Tsuji W., Gorantla V.S. et al. The role of adipose-derived stem cells in breast cancer progression and metastasis. Stem Cells int. 2015; 2015: 120949.
  59. Freese K.E., Kokai L., Edwards R.P. et al. Adipose-derived stems cells and their role in human cancer development, growth, progression, and metastasis: a systematic review. Cancer Res. 2015; 75(7): 1161-8.
  60. Wei H.J., Zeng R., Lu J.H. et al. Adipose-derived stem cells promote tumor initiation and accelerate tumor growth by interleukin-6 production. Oncotarget 2015; 6(10): 7713-26.
  61. Chu Y., Tang H., Guo Y. et al. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer. Exp. Cell Res. 2015; 337(1): 16-27.
  62. Yu X., Su B., Ge P. et al. Human adipose derived stem cells induced cell apoptosis and s phase arrest in bladder tumor. Stem Cells int. 2015; 2015: 619290.
  63. Ning H., Lei H.E., Xu Y.D. et al. Conversion of adipose-derived stem cells into natural killer-like cells with anti-tumor activities in nude mice. PLoS One 2014; 9(8): e106246.
  64. Philips B.J., Marra K.G., Rubin J. P. Adipose stem cell-based soft tissue regeneration. Expert Opin. Biol. Ther. 2012; 12(2): 155-63
  65. Griffin M., Kalaskar D.M., Butler P.E. et al. The use of adipose stem cells in cranial facial surgery. Stem Cell Rev. 2014; 10(5): 671-85.
  66. Philips B.J., Marra K.G., Rubin J.P. Healing of grafted adipose tissue: current clinical applications of adipose-derived stem cells for breast and face reconstruction. Wound Repair Regen. 2014; 22 Suppl 1: 11-3.
  67. Lee S.J., Kang S.W., Do H.J. et al. Enhancement of bone regeneration by gene delivery of BMP2/Runx2 bicistronic vector intoadipose-derived stromal cells. Biomaterials 2010; 31(21): 5652-9
  68. Lv X., Zhou G., Liu X. et al. Chondrogenesis by co-culture of adipose-derived stromal cells and chondrocytes in vitro. Connect Tissue Res. 2012; 53(6): 492-7.
  69. Sung M.S., Mun J.Y., Kwon O. et al. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein. Biochem. Biophys. Res. Commun. 2013; 437(1): 156-61.
  70. Bayati V., Sadeghi Y., Shokrgozar M.A. et al. The evaluation of cyclic uniaxial strain on myogenic differentiation of adipose-derived stem cells. Tissue Cell 2011; 43(6): 359-66.
  71. Vieira N.M., Brandalise V., Zucconi E. et al. Human multipotent adipose-derived stem cells restore dystrophin expression of Duchenne skeletal-muscle cells in vitro. Biol. Cell 2008; 100(4): 231-41.
  72. Goudenege S., Pisani D.F., Wdziekonski B. et al. Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of MyoD. Mol. Ther. 2009; 17(6): 1064-72.
  73. Wang H., Shi J., Wang Y. et al. Promotion of cardiac differentiation of brown adipose derived stem cells by chitosan hydrogel for repair after myocardial infarction. Biomaterials 2014; 35(13): 3986-98.
  74. Song K., Wang Z., Li W. et al. in vitro culture, determination, and directed differentiation of adult adipose-derived stem cells towards cardiomyocyte-like cells induced by angiotensin ii. Appl. Biochem. Biotechnol. 2013; 170(2): 459-70.
  75. Deng M., Gu Y., Liu Z. et al. Endothelial Differentiation of Human Adipose-Derived Stem Cells on Polyglycolic Acid/Polylactic Acid Mesh. Stem Cells int. 2015; 2015: 350718.
  76. Pallua N., Serin M., Wolter T.P. Characterisation of angiogenetic growth factor production in adipose tissue-derived mesenchymal cells. J. Plast. Surg. Hand Surg. 2014; 48(6): 412-6.
  77. Pavlova G., Lopatina T., Kalinina N. et al. in vitro neuronal induction of adipose-derived stem cells and their fate after transplantation into injured mouse brain. Curr. Med. Chem. 2012; 19(30): 5170-7.
  78. Nam J.S., Kang H.M., Kim J. et al. Transplantation of insulin-secreting cells differentiated from human adipose tissue-derived stem cells into type 2 diabetes mice. Biochem. Biophys. Res. Commun. 2014; 443(2): 775-81.
  79. Zhang X., Dong J. Direct comparison of different coating matrix on the hepatic differentiation from adipose-derived stem cells. Biochem. Biophys. Res. Commun. 2015; 456(4): 938-44.

Copyright (c) 2016 PJSC Human Stem Cells Institute

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 57156 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies