Encapsulation of cells and tissues of the pancreas: problems and ways of their overcoming

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Despite advances in treatment the patients suffering from diabetes mellitus type 1 have a lifetime shorter the average in population. This is defined primarily by the lack of sufficient glycemic control in these patients The active researches investigating the safety and efficacy of the grafting materials have been carried out in the last decades The review presents modern data on the use of pancreas cells and tissues encapsulation as a possible method for treatment of diabetes type 1 The main problems of the capsules application and possible ways to overcome them were described

Full Text

Restricted Access

About the authors

V. V Shupletsova

I.Kant Baltic Federal University

L. S Litvinova

I.Kant Baltic Federal University

Email: larisalitvinova@yandex.ru

A. A Karpov

I.P. Pavlov First Saint Petersburg State Medical University

O. V Korniushyn

V.A. Almazov Northwestern Federal Medical Research Center; ITMO University

A. E Neimark

V.A. Almazov Northwestern Federal Medical Research Center; I.P. Pavlov First Saint Petersburg State Medical University

N. A Sohonevich

I.Kant Baltic Federal University

M. A Vasilenko

I.Kant Baltic Federal University

S. V Dora

V.A. Almazov Northwestern Federal Medical Research Center; I.P. Pavlov First Saint Petersburg State Medical University

References

  1. Маслова О.В., Сунцов Ю.И., Болотская Л.Л. и др. Эпидемиология сахарного диабета и прогноз его распространенности в Российской Федерации. Сахарный диабет 2011; 1: 15-8.
  2. Сунцов Ю.И., Маслова О.В., Дедов И.И. Скрининг осложнений сахарного диабета как метод оценки лечебно-профилактической помощи больным. Проблемы эндокринологии 2010; 1: 3-8.
  3. Касаткина Э.П., Одуд Е.А., Сивоус Г.И. и соавт. Профилактика, скрининг и лечение поздних диабетических осложнений у детей и подростков Актуальные вопросы детской и подростковой эндокринологии 1999; 2: 9-18.
  4. Кирилюк М.Л. Осложнения сахарного диабета 1 типа у детей и подростков (обзор литературы и собственные данные). Украинский журнал детской эндокринологии 2012; 1(1): 27-35.
  5. The Diabetes control and complications trial and follow-up study http://diabetes. niddk. nih. gov/dm/pubs/control.
  6. Дедов И.И., Балаболкин М.И. Возможности и проблемы трансплантации FI-клеток поджелудочной железы при сахарном диабете. Сахарный диабет 2005; 2: 42-52.
  7. Rheinheimer J., Bauer A.C., Silveiro S.P. et al. Human pancreatic islet transplantation: an update and description of the establishment of a pancreatic islet isolation laboratory Arch Endocrinol Metab 2015; 59(2): 161-70.
  8. Vaithilingam V., Tuch B.E. islet transplantation and encapsulation: an update on recent developments. Rev. Diabet. Stud. 2011; 8(1): 51-67.
  9. Tam S.K., Dusseault J., Polizu S. et al. impact of residual contamination on the biofunctional properties of purified alginates used for cell encapsulation. Biomaterials 2006; 27(8): 1296-305.
  10. Langlois G., Dusseault J., Bilodeau S. et al. Direct effect of alginate purification on the survival of islets immobilized in alginate-based microcapsules. Acta Biomater. 2009; 5(9): 3433-40.
  11. Ménard M., Dusseault J., Langlois G. et al. Role of protein contaminants in the immunogenicity of alginates. J. Biomed. Mater. Res. B Appl. Biomater. 2010; 93(2): 333-40.
  12. Figliuzzi M., Plati T., Cornolti R. et al. Biocompatibility and function of microencapsulated pancreatic islets Acta Biomater 2006; 2(2): 221-7.
  13. Mathe Z., Bucher P., Bosco D. et al. Short-term immunosuppression reduces fibrotic cellular infiltration around barium-M-alginate microbeads injected intraportally Transplant Proc 2004; 36(4): 1199-200.
  14. Schneider S., Klein H.H. Long-term graft function of cryostored alginate encapsulated rat islets. Eur. J. Med. Res. 2011; 16(9): 396-400
  15. Qi M., M0rch Y., Lacik I. et al. Survival of human islets in microbeads containing high guluronic acid alginate crosslinked with Ca2+ and Ba2+. Xenotransplantation 2012; 19(6): 355-64.
  16. Su J., Hu B.H., Lowe W.L. et al. Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation Biomaterials 2010; 31(2): 308-14.
  17. de Vos P., Spasojevic M., Faas M.M. Treatment of diabetes with encapsulated islets. Adv. Exp. Med. Biol. 2010; 670: 38-53.
  18. Gazda L.S., Vinerean H.V., Laramore M.A. et al. No Evidence of Viral Transmission following Long-Term implantation of Agarose Encapsulated Porcine islets in Diabetic Dogs. J. Diabetes Res. 2014; 2014: 727483.
  19. Hillberg A.L., Oudshoorn M., Lam J.B. et al. Encapsulation of porcine pancreatic islets within an immunoprotective capsule comprising methacrylated glycol chitosan and alginate J Biomed Mater. Res. B Appl. Biomater. 2015; 103(3): 503-18.
  20. Jang J.Y., Lee D.Y., Park S.J. et al. immune reactions of lymphocytes and macrophages against PEG-grafted pancreatic islets Biomaterials 2004; 25(17): 3663-9.
  21. Vaithilingam V., Oberholzer J., Guillemin G.J. et al. The humanized NOD/SCID mouse as a preclinical model to study the fate of encapsulated human islets. Rev. Diabet. Stud. 2010; 7(1): 62-73.
  22. Toso C., Oberholzer J., Ceausoglu I. et al. Intra-portal injection of 400- microm microcapsules in a large-animal model Transpl Int 2003; 16(6): 405-10.
  23. Dufrane D., Goebbels R.M., Saliez A. et al. Six-month survival of microencapsulated pig islets and alginate biocompatibility in primates: proof of concept. Transplantation 2006; 81(9): 1345-53.
  24. de Vos P., Faas M.M., Strand B. et al. Alginate-based microcapsules for immunoisolation of pancreatic islets Biomaterials 2006; 27(32): 5603-17.
  25. Lamb M., Storrs R., Li S. et al. Function and viability of human islets encapsulated in alginate sheets: in vitro and in vivo culture. Transplant. Proc. 2011; 43(9): 3265-6.
  26. Sasikala M., Rao G.V., Vijayalakshmi V. et al. Long-term functions of encapsulated islets grafted in nonhuman primates without immunosuppression. Transplantation 2013; 96(7): 624-32.
  27. Jacobs-Tulleneers-Thevissen D., Chintinne M., Ling Z. et al. Sustained function of alginate-encapsulated human islet cell implants in the peritoneal cavity of mice leading to a pilot study in a type 1 diabetic patient. Diabetologia 2013; 56(7): 1605-14.
  28. Ярилин А. А. Иммунология. М.: ГЭОТАР-Медиа; 2010.
  29. de Vos P., van Hoogmoed C.G., van Zanten J. et al. Long-term biocompatibility, chemistry, and function of microencapsulated pancreatic islets. Biomaterials 2003; 24(2): 305-12.
  30. Meirigeng Qi. Transplantation of encapsulated pancreatic islets as a treatment for patients with type 1 diabetes mellitus Advan. Med. 2014; 2014: 429710.
  31. Qi M., Lacik I., Kolláriková G. et al. A recommended laparoscopic procedure for implantation of microcapsules in the peritoneal cavity of non-human primates. J. Surg. Res. 2011; 168(1): 117-23.
  32. Dufrane D., Steenberghe M., Goebbels R.M. et al. The influence of implantation site on the biocompatibility and survival of alginate encapsulated pig islets in rats. Biomaterials 2006; 27(17): 3201-8.
  33. Hals I.K., Rokstad A.M., Strand B.L. et al. Alginate microencapsulation of human islets does not increase susceptibility to acute hypoxia. J. Diabetes Res. 2013; 2013: 374925.
  34. Safley S.A., Kapp L.M., Tucker-Burden C. et al. Inhibition of cellular immune responses to encapsulated porcine islet xenografts by simultaneous blockade of two different costimulatory pathways Transplantation 2005; 79(4): 409-18.
  35. Kobayashi T., Harb G., Rajotte R.V. et al. Immune mechanisms associated with the rejection of encapsulated neonatal porcine islet xenografts. Xenotransplantation 2006; 13(6): 547-59.
  36. Balibrea del Castillo J.M., Arias-Diaz J., Garcia Martin M.C. et al. Cytoprotective effect of low-dose tacrolimus on islets of Langerhans in cultures subjected to stimulation by acute rejection cytokines Cir Esp. 2010; 87(6): 372-7.
  37. Merani S., Pawlick R.L., Edgar R.L. et al. Protein kinase C inhibitor, AEB-071, acts complementarily with cyclosporine to prevent islet rejection in rats. Transplantation 2009; 87(1): 59-65.
  38. Marzorati S., Melzi R., Citro A. et al. Engraftment versus immunosuppression: cost-benefit analysis of immunosuppression after intrahepatic murine islet transplantation. Transplantation 2014; 97(10): 1019-26.
  39. Veriter S., Mergen J., Goebbels R.M. et al. In vivo selection of biocompatible alginates for islet encapsulation and subcutaneous transplantation. Tissue Eng. Part A. 2010; 16(5): 1503-13.
  40. Yang K.C., Qi Z., Wu C.C. et al. The cytoprotection of chitosan based hydrogels in xenogeneic islet transplantation: An in vivo study in streptozotocin-induced diabetic mouse Biochem Biophys Res Commun. 2010; 393(4): 818-23.
  41. Kizilel S., Scavone A., Liu X. et al. Encapsulation of pancreatic islets within nano-thin functional polyethylene glycol coatings for enhanced insulin secretion. Tissue Eng. Part A. 2010; 16(7): 2217-28.
  42. Nilsson B., Ekdahl K.N., Korsgren O. Control of instant blood-mediated inflammatory reaction to improve islets of Langerhans engraftment. Curr. Opin. Organ Transplant. 2011; 16(6): 620-6.
  43. Tokodai K., Goto M., Inagaki A. et al. C5a-inhibitory peptide combined with gabexate mesilate prevents the instant blood-mediated inflammatory reaction in a rat model of islet transplantation. Transplant. Proc. 2010; 42(6): 2102-3.
  44. Gandhi J.K., Opara E.C., Brey E.M. Alginate-based strategies for therapeutic vascularization. Ther. Deliv. 2013; 4(3): 327-41.
  45. Johansson A., Olerud J., Johansson M. et al. Angiostatic factors normally restrict islet endothelial cell proliferation and migration: implications for islet transplantation. Transpl. int. 2009; 22(12): 1182-8.
  46. Moya M. L., Garfinkel M.R., Liu X. et al. Fibroblast growth factor-1 (FGF-1) loaded microbeads enhance local capillary neovascularization. J. Surg. Res. 2010; 160(2): 208-12.
  47. Figliuzzi M., Cornolti R., Perico N. et al. Bone marrow-derived mesenchymal stem cells improve islet graft function in diabetic rats Transplant. Proc. 2009; 41(5): 1797-800.
  48. Hematti P., Kim J., Stein A.P. et al. Potential role of mesenchymal stromal cells in pancreatic islet transplantation Transplant. Rev. (Orlando) 2013; 27(1): 21-9.
  49. Jacobson S., Kumagai-Braesch M., Tibell A. et al. Cotransplantation of stromal cells interferes with the rejection of allogeneic islet grafts. Ann. N. Y. Acad. Sci. 2008; 1150: 213-6.
  50. Longoni B., Szilagyi E., Quaranta P. et al. Mesenchymal stem cells prevent acute rejection and prolong graft function in pancreatic islet transplantation. Diabetes Technol. Ther. 2010; 12(6): 435-46.
  51. Reading J.L., Sabbah S., Busch S. et al. Mesenchymal stromal cells as a means of controlling pathological T-cell responses in allogeneic islet transplantation. Curr. Opin. Organ Transplant. 2013; 18(1): 59-64.
  52. Dominguez-Bendala J., Inverardi L., Ricordi C. Stem cell-derived islet cells for transplantation Curr Opin Organ Transplant 2011; 16(1): 76-82.
  53. Liu X., Wang Y., Li Y. et al. Research status and prospect of stem cells in the treatment of diabetes mellitus Sci China Life Sci 2013; 56(4): 306-12.
  54. Noguchi H. Stem cell applications in diabetes J Stem Cells 2012; 7(4): 229-44.
  55. Roche E., Vicente-Salar N., Arribas M. et al. Cell differentiation: therapeutical challenges in diabetes. J. Stem Cells 2012; 7(4): 211-28.
  56. Montanucci P., Pennoni I., Pescara T. et al. The functional performance of microencapsulated human pancreatic islet-derived precursor cells. Biomaterials 2011; 32(35): 9254-62.
  57. Jalili R.B., Moeen Rezakhanlou A., Hosseini-Tabatabaei A. et al. Fibroblast populated collagen matrix promotes islet survival and reduces the number of islets required for diabetes reversal. J. Cell Physiol. 2011; 226(7): 1813-9.
  58. Zhang Y., Jalili R.B., Warnock G.L. et al. Three-dimensional scaffolds reduce islet amyloid formation and enhance survival and function of cultured human islets. Am. J. Pathol. 2012; 181(4): 1296-305.
  59. Han X., Qiu L., Zhang Y. et al. Transplantation of sertoliislet cell aggregates formed by microgravity: prolonged survival in diabetic rats. Exp. Biol. Med. (Maywood). 2009; 234(5): 595-603.
  60. Tomei A.A., Manzoli V., Fraker C.A. et al. Device design and materials optimization of conformal coating for islets of Langerhans PNAS USA 2014; 111(29): 10514-9.
  61. Safley S.A., Cui H., Cauffiel S. M. Encapsulated piscine (tilapia) islets for diabetes therapy: studies in diabetic NOD and NOD-SCiD mice. Xenotransplantation 2014; 21(2): 127-39.
  62. Diab R.A., Hassan M., Tibell A. et al. Rat islets are not rejected by anti-islet antibodies in mice treated with costimulation blockade Xenotransplantation 2014; 21(4): 356-66.

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 85657 от 21.07.2023 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies