Construction and biological effect evaluation of gene-activated osteoplastic material with human vegf gene

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Development of new effective osteoplastic materials is highly requested in practice of traumatology and orthopedics, oral and maxillofacial surgery. The goals of our research were design and construction of gene-activated bone graft (GABG) consisting of collagen/hydroxyapatite scaffold and plasmid DNA encoding vegf-a165 and evaluation of its biological effect in vitro and in vivo. We have shown that GABG co-incubation with multipotent mesenchymal stromal cells increased their VEGF protein expression. After GABG implantation into parietal bones defects the transfection of «recipient bed cells» was observed and accompanied by more pronounced angiogenesis as compared with control. The lager volume of bone regenerate was in case of GABG on 15 and 30 days after application. The source of reparative osteogenesis was not only parietal bones but also the GABG fragments (even from central part of the defect) majority of which were surrounded by newly formed bone tissue. In control group no osteoinductive effect has been observed. Thus, GABG with plasmid DNA encoding VEGF-A165 possesses angiogenic activity providing osteoinductive properties.

Full Text

Restricted Access

References

  1. Дробышев А.Ю. Клинико-экспериментальное обоснование применения биокомпозиционных материалов при костно-восстановительных операциях на челюстях. Диссертация на соиск. ст. д-ра. мед. наук. Москва: МГМСУ. 1999.
  2. Дробышев А.Ю., Киселев А.А. Применение дистракционного метода у больных при дефектах и атрофии альвеолярной части нижней челюсти. Москва. 2007; 62 с.
  3. Кулаков Л.А., Робустова Т.Г., Неробеев Л.И., редакторы. Хирургическая стоматология и челюстно-лицевая хирургия. Национальное руководство. Москва: «ГЭОТАР-Медиа»; 2010.
  4. Deev R.V., Drobyshev A.Y., Bozo I.Y., Galetsky D.V., Korolev O.V., Philonenko E.S., Kisekev S.L., Isaev A.A. New approach for development of osteoplastic materials. Bioceramica and Cells for Reinforcement of Bone: Symposium [Riga, Latvia, October 18-20]. - Riga: Riga Stradins University, 2012. p.32.
  5. Shaw R.J., Brown J.S. Osteomyocutaneous deep circumflex iliac artery perforator flap in the reconstruction of midface defect with facial skin loss: a case report. Microsurgery 2009; 29(4): 299-302.
  6. Rogers G.F., Greene A.K. Autogenous bone graft: basic science and clinical implications. J Craniofac. Surg. 2012; 23(1): 323-7.
  7. Chiapasco M., Colletti G., Romeo E. et al. Long-term results of mandibular reconstruction with autogenous bone grafts and oral implants after tumor resection. Clin. Oral Implants Res. 2008; 19(10): 1074-80.
  8. Гололобов В.Г., Дулаев А.К., Деев Р.В. и д.р. Морфофункциональная организация, реактивность и регенерация костной ткани. СПб: 2006; 47 с.
  9. Данилов Р.К., редактор. Руководство по гистологии. Том. 1. СПб: «Спецлит»; 2012.
  10. Deev R.V., Drobyshev A.Y., Bozo I.Y., Sviridov E.G., Tsupkina N.V., Philonenko E.S., Kiselev S.L., Isaev A.A. Current approaches of bone tissue engineering. 3rd TERMIS World Congress 2012, 5-8 September 2012, Vienna, Austria. J. Tissue Eng. Reg. Med. 2012; 6 (Suppl. 1): 292.
  11. Krompecher S. Reaction of tissue differentiation to various effects in granulating bone surface, particularly in callus formation. Langenbecks Arch. Klin. Chir. Ver. Dtsch. Z. Chir. 1956; 281(5): 472-512.
  12. Hsieh C.P., Chiou Y.L., Lin C.Y. Hyperbaric oxygen-stimulated proliferation and growth of osteoblasts may be mediated through the FGF-2/MEK/ERK 1/2/NF-kB and PKC/JNK pathways. Connect. Tissue Res. 2010; 51(6): 497-509.
  13. Fiedler J., Leucht F., Waltenberger J. et al. VEGF-A and PlGF-1 stimulate chemotactic migration of human mesenchymal progenitor cells. Biochem. Biophys. Res. Commun. 2005; 334(2): 561-8.
  14. Швальб П.Г., Гавриленко А.В., Калинин Р.Е. и др. Эффективность и безопасность применения препарата «Неоваскулген» в комплексной терапии пациентов с хронической ишемией нижних конечностей (IIb-III фаза клинических испытаний). Клеточная трансплантология и тканевая инженерия 2011; VI(3): 76-83.
  15. Huang Y., Kaigler D., Rice K.G. et al. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J. Bone Miner. Res. 2005; 20(5): 848-57.
  16. Kolk A., Haczek C., Koch C. et al. A strategy to establish a gene-activated matrix on titanium using gene vectors protected in a polylactide coating. Biomaterials 2011; 32(28): 6850-9.
  17. Nomikou N., Feichtinger G.A., Redl H. et al. Ultrasound-mediated gene transfer (sonoporation) in fibrin-based matrices: potential for use in tissue regeneration. J. Tissue Eng. Regen. Med. 2013; Apr17 [Epub ahead of print].
  18. Wang Y.M., Liu B., Sun L.C. et al. Construction of VEGF recombinant plasmid pcDNA/V and its expression in model rats with acute myocardial ischemia. Sheng Wu. Gong. Cheng. Xue. Bao. 2006; 22(2): 220-5
  19. Samee M., Kasugai S., Kondo H. et al. Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) transfection to human periosteal cells enhances osteoblast differentiation and bone formation. J Pharmacol Sci. 2008; 108(1):18-31.
  20. Kanczler J.M., Oreffo R.O. et al. Osteogenesis and angiogenesis: the potential for engineering bone. Eur. Cell Mater. 2008; 15: 100-14.
  21. Bonadio J., Smiley E., Patil P. et al. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med. 1999; 5(7): 753-9.
  22. Geiger F., Bertram H., Berger I. et al. (2005). Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. J Bone Miner. Res. 20(11): 2028-2035.
  23. Guo T., Zeng X., Hong H. et al. (2006) Gene-activated matrices for cartilage defect reparation. Int J Artif Organs. 29(6): 612-621.
  24. Heyde M., Partridge K.A., Oreffo R.O. et al. (2007) Gene therapy used for tissue engineering applications. J Pharm. Pharmacol. 59(3): 329-350.
  25. Huang Y.C., Simmons C., Kaigler D. et al. (2005) Bone regeneration in a rat cranial defect with delivery of PEI-condensed plasmid DNA encoding for bone morphogenetic protein-4 (BMP-4). Gene Ther. 12(5): 418-26.
  26. Ito H., Koefoed M., Tiyapatanaputi P. et al. (2005) Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy. Nat Med. 11: 291-297.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies