Supravital lanthanoid staining for scanning electron microscopy of biological objects



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Since modern scanning electron microscopes are capable of low-vacuum mode and back-scattered electron detection, no other sample preparation, except for heavy metal staining, is necessary. Rare earth chlorides were used as contrast agents to study ocular tissues, cell cultures, and small invertebrates. It has been shown that supravital lanthanoid staining, if adjusted to meet the requirements of modern technology, significantly increases contrast of back-scattered electron images along with their informative value. Not only the microrelief but also internal structures (5-10 μm beneath the surface) of the samples can be visualized without 'classical' sample preparation. Selective accumulation of lantanoids in cell membranes is likely to be due to their binding to calcium ATPases. The developed method of lanthanoid staining enables the use of scanning electron microscopy for subsurface examination of biological objects

Full Text

Restricted Access

About the authors

I. A Novikov

Research Institute of Eye Diseases

A. M Subbot

Research Institute of Eye Diseases

A. A Fedorov

Research Institute of Eye Diseases

I. G Griboedova

Research Institute of Eye Diseases

E. N Antonov

Institute on Laser and Information Technologies of the RAS

I. V Vakhrushev

Institute of Biomedical Chemistry

References

  1. Miller T.W., Tormey J. M. Calcium displacement by lanthanum in subcellular compartments of rat ventricular myocytes: characterisation by electron probe microanalysis. Cardiovasc. Res. 1993; 27(12): 2106-12.
  2. Shaklai M., Tavassoli M. Lanthanum as an electron microscopic stain. J. Histochem. Cytochem. 1982; 30(12): 1325-30.
  3. Doggenweiler C.F., Frenk S. Staining properties of lanthanium on cell membranes. PNAS USA 1965; 53(2): 425-30.
  4. Zancanaro C., Sbarbati A., Franceschini F. et al. The chemoreceptor surface of the taste disc in the frog, Rana esculenta. An ultrastructural study with lanthanum nitrate. Histochem. J. 1990; 22(9): 480-6.
  5. Leslie R.A. The effects of ionic lanthanum and hypertonic physiological salines on the nervous systems of larval and adult stick insects. J. Cell Sci. 1975; 18(2): 271-86.
  6. Mills C.J., Buhl A.E., Ulrich R.G. et al. Ultrastructural localization and quantification of extracellular calcium binding sites in mouse vibrissa and human scalp follicles. Skin Pharmacol. 1993; 6(4): 259-67.
  7. Вахрушев И.В., Антонов Е.Н., Попова А.В. и др. Разработка тканеинженерных имплантов для регенерации костной ткани на основе полилактогликолидных скаффолдов нового поколения и мультипотентных мезенхимальных клеток пульпы молочного зуба (SHED-клеток), Клеточные технологии в биологии и медицине 2012; 1: 29-33.
  8. Kuo J., editor. Electron microscopy: methods and protocols. Third Edition. New York: Humana Press; 2014.
  9. Wu J., Yang J., Liu Q. et al. Lanthanum induced primary neuronal apoptosis through mitochondrial dysfunction modulated by Ca2 and Bcl-2 family. Biol. Trace Elem. Res. 2013; 152(1): 125-34.
  10. Ferreira-Gomes M.S., Gonzalez-Lebrero R.M., de la Fuente M. C. et al. Calcium occlusion in plasma membrane Ca2 + -ATPase. J. Biol. Chem. 2011; 286(37): 32018-25.
  11. Moreira О.C. , Rios P.F., Barrabin H. inhibition of plasma membrane Ca(2 + )-ATPase by CrATP. LaATP but not CrATP stabilizes the Ca(2 + )-occluded state. BBA 2005; 1708(3): 411-9.
  12. Glynn I.M., Karlish S.J. Occluded cations in active transport. Annu. Rev. Biochem. 1990; 59:171-205.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies