Effect of decellularization with sDs and Triton X-100 detergent solutions on the strength capacities of small caliber arteries

Cite item


The research is dedicated to evaluation of the effect of the human mammary artery decellularization with 1 % solution of sodium dodecyl sulfate (SDS) and 1% solution of Triton X-100 during 2 hours on its morphological structure and its strength capacities As a result of decellularization all the cellular elements were eliminated from the vessel. Nevertheless, it appeared to be possible to preserve complex spatial structure of the vascular wall. The process of decellularization did not change significantly collagen basis of the vascular wall Although, under 2 hour effect of the detergents one could see lowering collagen concentration down to 80% in intima, media and adventitia. However, even in these circumstances the strength of the vessel was not less than 46% versus that of intact vessels The obtained data are important for the further study aimed at the development of a new generation of vascular implants

Full Text

Restricted Access

About the authors

Sh. D Akhmedov

Research Institute for Cardiology

V. A Lugovsky

Research Institute for Cardiology

Email: vladimirlugovskij@yandex.ru

S. L Andreev

Research Institute for Cardiology

M. S Rebenkova

Research Institute for Cardiology

Y. V Rogovskaya

Research Institute for Cardiology

I. M Skurihin

Research Institute for Cardiology

Yu. Yu Vecherskiy

Research Institute for Cardiology

S. A Afanasyev

Research Institute for Cardiology


  1. Langer R., Vacanti J.P. Tissue engineering: the design and abrication of living replacement devices for surgical reconstruction and transplantation. Science 1993; 260: 920-6.
  2. Fuchs J.R., Nasseri B.A., Vacanti J.P. Tissue engineering: a 21st century solution to surgical reconstruction. Ann. Thorac. Surg. 2001; 72: 577-91.
  3. Mclntire L.V., Greisler H.P., Griffith L. et al. WTEC panel report on tissue engineering research. Final report. International Technology Research Institute. Baltimore: Academic Press; 2002.
  4. Atala A. Tissue engineering, stem cells and cloning: current concepts and changing trends. Expert opinion on biological therapy 2005; 5: 879.
  5. Amulya S. Tissue engineering: present concepts and strategies J. Indian Assoc. Ped. Surg. 2005; 10: 14-9.
  6. Taylor D.A. From stem cells and cadaveric matrix to engineered organs. Curr. 0pin. Biotech. 2009; 20: 598-605.
  7. Murphy S.V., Atala A. 0rgan engineering - combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation. Bioessays 2012; 35: 163-72.
  8. L'Heureux N., Paquet S., Labbe R. et al. A completely biological tissue-engineered human blood vessel. FASEB J. 1998; 12: 47-56.
  9. Hoerstrup S.P., Zund G., Sodian R. et al. Tissue engineering of small caliber vascular grafts. Euro. J. Card. -Thor. Surg. 2001; 20: 164-9.
  10. Kanda K., Matsuda T., Oka T. In vitro reconstruction of hybrid vascular tissue. Hierarchie and oriented cell layers. ASAI0 J. 1993; 39(3): M561-5.
  11. Kakisis J.D., Liapis C.D., Breuer C. et al. Artificial blood vessel: the Holy Grail of peripheral vascular surgery. J. Vasc. Surg. 2005; 41(2): 349-54.
  12. Ахмедов Ш.Д., Афанасьев С.А., Дьякова М.Л. и др. Использование бесклеточного матрикса для формирования новых кровеносных сосудов и сердца методом тканевой инженерии. Клеточная трансплантология и тканевая инженерия 2009; IV(2): 32-9.
  13. Ахмедов Ш.Д., Афанасьев С.А., Егорова М.В. и др. Тканевая инженерия в экспериментальной сердечно-сосудистой хирургии: технология получения бесклеточных коллагеновых матриксов сосудов животных и человека. Клеточная трансплантология и тканевая инженерия 2011; VI(1): 68-72.
  14. Pektok E., Nottelet B., Tille J. et al. Degradation and healing characteristics of small-diameter poly(e-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation 2008; 118(24): 2563-70
  15. Tillman B., Yazdani S., Lee S. et al. The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction. Biomaterials 2009; 30(4): 583-8.
  16. Афанасьев С.А., Ахмедов Ш.Ж., Егорова М.В. и др. Способ получения соединительно-тканного каркаса магистрального сосуда млекопитающих животных и человека. Патент РФ 02407459 C1. 25 07 2009
  17. Егорова М.В., Роговская Ю.В., Иванов А.В. и соавт. Экономичная технология получения бесклеточной матрицы артериального сосуда животных и человека Клеточные технологии в биологии и медицине 2011; 2: 111-3.
  18. Петрова С.В., Райклин Н.Т. Руководство по иммуногистохи-мической диагностике опухолей человека К : Титул; 2004
  19. Сергеевичев Д.С., Подхватилтна Н.А., Васильева М.Б. и др. Морфо-функциональные особенности аортального графта после децеллюляризации Комплексные проблемы сердечно-сосудистых заболеваний 2012; 2: 3-6.

Copyright (c) 2015 PJSC Human Stem Cells Institute

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 57156 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies