The role of reactive oxygen species and nitric oxide in the realization of the adaptation mechanisms of bone-derived multipotent mesenchymal stromal cells to hypoxia under cultivation with growth factor bFGF

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The simulation of conditions in vivo under cultivation the stem cells in vitro as well gas media content (low O2 concentrate) and different growth factors presence is one of the feasible way of growth rate of multipotent mesenchymal stromal cells (MMSC) culture increase when kept differentiation potential and maintained high viability. Oxygen metabolites: reactive oxygen (ROS) and nitrogen species are the most interesting for studying the influence of above characteristics on proliferation activity and viability of MMSC So it is currently important to identify ROS and NO role in MMSC by cooperative cultivation with growth factor bFGF under hypoxia. The research was aimed to study an effect of 5% hypoxia on Н2О2, О2- and NO content in MMSC from bone marrow in the cell culture in the presence or absence bFGF It was found out that both 5% hypoxia and bFGF (7 ng/ml) decrease the intracellular Н2О2, О2- and NO concentration on the background of elevated HIF1α gene expression and depressed p53 gene expression. At the same time simultaneous action of hypoxia and bFGF promotes minimal ROS and NO generation, maximizes the effects on HIF1α and p53 genes expression probable for the genome protection Taking into account the increasing the proliferative activity and viability of MMSC culture under these conditions that was shown previously by us, obtained results indicate the regulatory role of ROS and NO in the long-term MMSC adaptation to 5% hypoxia, simulating O2 physiologic content as in vivo

Full Text

Restricted Access

About the authors

A. G Poleshko

Institute of Biophysics and Cell Engineering, NAS of Belarus


I. D Volotovski

Institute of Biophysics and Cell Engineering, NAS of Belarus



  1. Gomes A., Fernandes E., Lima J.L.F.C. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 2005; (65): 45-80.
  2. Kim H-R., Won S.J., Fabian C. et al. Mitochondrial DNA aberrations and pathophysiological implications in hematopoietic diseases, chronic inflammatory diseases, and cancers. Ann. Lab. Med. 2015; (35): 1-14.
  3. Hamanaka R.B., Chandel N.S. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes Trends Biochem. Sci. 2010; 35(9): 505-13.
  4. Hamanaka R.B., Chandel N.S. Mitochondrial reactive oxygen species regulate hypoxic signaling. Current 0pinion in Cell Biology 2009; 21(6): 894-9.
  5. Bartosz G. Reactive oxygen species: destroyers or messengers? Biochemical Pharmacology 2009; 77(8): 1303-15.
  6. Yan L.-J. Positive oxidative stress in aging and aging-related disease tolerance. Redox Biology 2014; (2): 165-9.
  7. Chen C.-T., Shih Y-R.V., Kuo T.K. et al. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells Stem cells 2008; (26): 960-8.
  8. Carreira B.P., Morte M.I., Santos A.I. et al. Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling Front Cell Neurosci 2014; (8): Art. 343.
  9. Li L., Guo Y., Zhai H. et al. Aging increases the susceptivity of MSCs to reactive oxygen species and impairs their therapeutic potency for myocardial infarction. PLoS 0NE 2014; 9(11): e111850.
  10. Lin Q., Lee Y-J., Yun Z. Differentiation arrest by hypoxia. J. Biol. Chem. 2006; 281(31): 30678-83.
  11. Kolf C.M., Cho E., Tuan R.S. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, selfrenewal and differentiation. Arthritis Res. Ther. 2007; (9): Art. 204
  12. Yun Y.R., Won J.E., Jeon E. et al. fibroblast growth factors: biology, function, and application for tissue regeneration J Tissue Eng 2010; Art. 218142.
  13. Holzwarth C., Vaegler M., Gieseke F. et al. Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biology 2010; (11): Art. 11.
  14. Lavrentieva A., Majore I., Kasper C. et al. Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells. Cell Communication and Signaling 2010; (8): Art. 18.
  15. Полешко А.Г., Лобанок Е.С., Волотовский И.Д. Влияние гипоксии на порфириновый метаболизм в МСК костного мозга. Клеточные технологии в биологии и медицине 2014; (1): 57-62.
  16. Полешко А.Г., Лобанок Е.С., Межевикина Л.М. и др. Процесс гемообразования в мезенхимальных стволовых клетках костного мозга при их культивировании с фактором роста bFGF в условиях гипоксии. Биофизика 2014; 59(6): 1125-30.
  17. Полешко А.Г., Лобанок Е.С., Волотовский И.Д. Влияние фактора роста bFGF на процесс гемообразования в МСК костного мозга крыс. Вести НАН. Серия биологических наук 2014; (2): 77-81.
  18. Schmid T., Zhou J., Köhl R. et al. p300 relieves p53-evoked transcriptional repression of hypoxia-inducible factor-1 (HiF-1). Biochem. J. 2004; 380(1): 289-95.
  19. Goda N., Ryan H.E., Khadivi B. et al. Hypoxia-inducible factor 1 is essential for cell cycle arrest during hypoxia. Mol. Cell Biol. 2003; 23(1): 359-69.
  20. Лукьянова Л.Д., Кирова Ю.И., Сукоян Г.В. Сигнальные механизмы адаптации к гипоксии и их роль в системной регуляции Биологические мембраны 2012; 29(4): 238-52.
  21. Shi Y-H., Wang Y-X., You J-F. et al. Activation of HiF-1 by bFGF in breast cancer: role of Pi-3K and MEK1/ERK pathways. Zhonghua Yi Xue Za Zhi 2004; 84(22): 1899-903.
  22. Zhang L., Dang R-J., Li H. et al. S0CS1 regulates the immune modulatory properties of mesenchymal stem cells by inhibiting nitric oxide production. PLoS 0NE 2014; 9(5): e97256.
  23. Hwang A.B., Lee S-J. Regulation of life span by mitochondrial respiration: the HiF-1 and R0S connection. Aging 2011; 3(3): 304-10.
  24. Ударцева О.О., Андреева Е.Р., Рылова Ю.В. и др. Влияние фотодинамически индуцированной генерации АФК на состояние митохондрий и лизосом культивируемых мезенхимных стромальных клеток человека Клеточная трансплантология и тканевая инженерия 2010; Y(4): 38-42.
  25. Basciano L., Nemos C., Foliguet B. et al. Long term culture of mesenchymal stem cells in hypoxia promotes a genetic program maintaining their undifferentiated and multipotent status BMC Cell Biol. 2011; (12): Art. 12.
  26. Серебряковская Т.В. Гипоксия-индуцибельный фактор: роль в патофизиологии дыхания Украинский пульмонологический журнал 2005; (3): 77-81.
  27. Le Belle J.E., 0rozco N.M., Paucar A.A. et al. Proliferative neural stem cells have high endogenous R0S levels that regulate selfrenewal and neurogenesis in a Pi3K/Akt-dependant manner. Cell Stem Cell 2011; 8(1): 59-71.
  28. bacz J., Pastorekova S., Vojtesek B. et al. Cross-talk between HiF and p53 as mediators of molecular responses to physiological and genotoxic stresses. Mol. Cancer 2013; (12): Art. 93.
  29. Hubert A., Paris S., Piret J-P. et al. Casein kinase 2 inhibition decreases hypoxia-inducible factor-1 activity under hypoxia through elevated p53 protein level. J. Cell Sci. 2006; 119(16): 3351-62.
  30. Jin X., Beck S., Sohn Y-W. et al. Human telomerase catalytic subunit (hTERT) suppresses p53-mediated anti-apoptotic response via induction of basic fibroblast growth factor Exp Mol Med 2010; 42(8): 574-82

Copyright (c) 2015 Eco-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 85657 от 21.07.2023 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies