The role of EF-hand Са2+/Mg2+-binding tescalcin protein in cell proliferation and differentiation

Cite item


EF-hand Са2+/Мд2+-binding proteins are involved in many important processes in the body. Identification and analysis of the EF-hand motifs in the genome led to the discovery of novel Ca2+-binding proteins, which are potentially useful for biomedical applications. One of such molecules is tescalcin - 24 kDa protein with one EF-hand motif. Tescalcin plays an important role in differentiation of hematopoietic cells by regulating the expression of Ets family transcription factors via PMA-induced ERK-pathway. At the molecular level, it was shown to interact with subunit 4 of signalosome COP9 and Na+/H+-exchanger. Recently a potential use of tescalcin for cancer diagnostics was demonstrated

Full Text

Restricted Access

About the authors

K. G Kolobynina

Kazan (Volga Region) Federal University

V. V Solovyeva

Kazan (Volga Region) Federal University

V. Z Slepak

University of Miami Miller School of Medicine

A. A Rizvanov

Kazan (Volga Region) Federal University



  1. Gutierrez-Ford C., Levay K., Gomes A.V. et al. Characterization of tescalcin, a novel EF-hand protein with a single Ca2+-binding site: metal-binding properties, localization in tissues and cells, and effect on calcineurin. Biochemistry 2003; 42(49): 14553-65.
  2. Zhou Y., Yang W., Kirberger M. et al. Prediction of EF-hand calcium-binding proteins and analysis of bacterial EF-hand proteins Proteins 2006; 65(3): 643-55
  3. Kang Y. H., Han S. R., Kim J.T. et al. The EF-hand calcium-binding protein tescalcin is a potential oncotarget in colorectal cancer Oncotarget 2014; 5(8): 2149-60.
  4. Henikoff S., Greene E.A., Pietrokovski S. et al. Gene families: the taxonomy of protein paralogs and chimeras. Science 1997; 278(5338): 609-14.
  5. Kretsinger R. H., Nockolds C. E. Carp muscle calcium-binding protein. II. Structure determination and general description. J. Biol. Chem. 1973; 248(9): 3313-26.
  6. Lewit-Bentley A., Rety S. EF-hand calcium-binding proteins. Curr. Opin. Struct. Biol. 2000; 10(6): 637-43.
  7. Kawasaki H., Nakayama S., Kretsinger R. H. Classification and evolution of EF-hand proteins. Biometals 1998; 11(4): 277-95.
  8. Falke J. J., Drake S. K., Hazard A. L. et al. Molecular tuning of ion binding to calcium signaling proteins. Q. Rev. Biophys. 1994; 27(3): 219-90
  9. Gifford, J. L. , Walsh M. P. , Vogel H. J. Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochemical J. 2007; 405(2): 199-221.
  10. Nagae M. , Nozawa A. , Koizumi N. et al. The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana. J. Biol. Chem. 2003; 278(43): 42240-6.
  11. Blanchard H. , Grochulski P. , Li Y. et al. Structure of a calpain Ca(2 + )-binding domain reveals a novel EF-hand and Ca(2 + )-induced conformational changes. Nat. Struct. Biol. 1997; 4(7): 532-8.
  12. Jia J. , Tarabykina S. , Hansen C. et al. Structure of apoptosis-linked protein ALG-2: insights into Ca2+-induced changes in penta-EF-hand proteins. Structure 2001; 9(4): 267-75.
  13. Grabarek Z Structural basis for diversity of the EF-hand calcium-binding proteins J Mol Biol 2006; 359(3): 509-25
  14. Malmendal A., Evenäs J., Forsén S. et al. Structural dynamics in the C-terminal domain of calmodulin at low calcium levels. J. Mol. Biol. 1999; 293(4): 883-99.
  15. Biekofsky R. R., Feeney J. Cooperative cyclic interactions involved in metal binding to pairs of sites in EF-hand proteins FEBS Lett. 1998; 439(1-2): 101-6.
  16. Finn B. E. , Kördel J., Thulin E. et al. Dissection of calbindin D9k into two Ca(2 + )-binding subdomains by a combination of mutagenesis and chemical cleavage. FEBS Lett. 1992; 298(2-3): 211-4.
  17. Linse S. , Forsen S. Determinants that govern high-affinity calcium binding. Adv. Second Mess. Phosph. Res. 1995; 30: 89-151.
  18. Perera E. M., Martin H., Seeherunvong T. et al. Tescalcin, a novel gene encoding a putative EF-hand Ca(2 + )-binding protein, Col9a3, and renin are expressed in the mouse testis during the early stages of gonadal differentiation. Endocrinology 2001; 142(1): 455-63
  19. Potter J. D. , Gergely J. The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J. Biol. Chem. 1975; 250(12): 4628-33.
  20. Bhattacharya S., Bunick C. G., Chazin W. J. Target selectivity in EF-hand calcium binding proteins. Biochim. Biophys. Acta. 2004; 1742(1-3): 69-79.
  21. Malmendal A., Linse S. , Evenäs J. et al. Battle for the EF-hands: magnesium-calcium interference in calmodulin. Biochemistry 1999; 38(36): 11844-50.
  22. Brodersen D. E., Nyborg J., Kjeldgaard M. Zinc-binding site of an S100 protein revealed. Two crystal structures of Ca2+-bound human psoriasin (S100A7) in the Zn2+-loaded and Zn2+-free states. Biochemistry 1999; 38(6): 1695-704.
  23. Perera E. M., Bao Y., Kos L. et al. Structural and functional characterization of the mouse tescalcin promoter Gene 2010; 464(1-2): 50-62.
  24. Zozulya S. , Stryer L. Calcium-myristoyl protein switch. PNAS USA 1992; 89(23): 11569-73.
  25. Mailander J., Muller-Esterl W. , Dedio J. Human homolog of mouse tescalcin associates with Na( + )/H( + ) exchanger type-1. FEBS Lett. 2001; 507(3): 331-5.
  26. Li G. D., Zhang X., Li R. et al., CHP2 activates the calcineurin/ nuclear factor of activated T cells signaling pathway and enhances the oncogenic potential of HEK293 cells. J. Biol. Chem. 2008; 283(47): 32660-8
  27. Levay K., Slepak V. Z. Regulation of Cop9 signalosome activity by the EF-hand Ca2+-binding protein tescalcin. J. Cell. Sci. 2014; 127(Pt 11): 2448-59.
  28. Levay K., Slepak V.Z. Tescalcin is an essential factor in megakaryocytic differentiation associated with Ets family gene expression. J. Clin. Invest. 2007; 117(9): 2672-83.
  29. Levay K., Slepak V. Z. Up- or downregulation of tescalcin in HL-60 cells is associated with their differentiation to either granulocytic or macrophage-like lineage. Exp. Cell. Res. 2010; 316(7): 1254-62.
  30. Li X., Liu Y., Kay C. M. et al., The Na+/H+ exchanger cytoplasmic tail: structure, function, and interactions with tescalcin. Biochemistry 2003; 42(24): 7448-56.
  31. Malo M. E., Fliegel L. Physiological role and regulation of the Na+/ H+ exchanger. Can. J. Physiol. Pharmacol. 2006; 84(11): 1081-95.
  32. Zaun H. C., Shrier A., Orlowski J. Calcineurin B homologous protein 3 promotes the biosynthetic maturation, cell surface stability, and optimal transport of the Na+/H+ exchanger NHE1 isoform. J. Biol. Chem. 2008; 283(18): 12456-67.
  33. Dannlowski U., Grabe H. J., Wittfeld K. et al. Multimodal imaging of a tescalcin (TESC)-regulating polymorphism (rs7294919)-specific effects on hippocampal gray matter structure. Mol. Psychiatry. 2015; 20(3): 398-404.
  34. Ukarapong S., Bao Y., Perera E. M. et al. Megakaryocyte development is normal in mice with targeted disruption of Tescalcin. Exp. Cell. Res. 2012; 318(5): 662-9.
  35. Wei N., Deng X.W. The COP9 signalosome. Annu. Rev. Cell Dev. Biol. 2003; 19: 261-86.
  36. Kato J.Y., Yoneda-Kato N. Mammalian COP9 signalosome. Genes Cells. 2009; 14(11): 1209-25.
  37. Man C. H. , Lam S. S., Sun M. K. et al. A novel tescalcin-sodium/ hydrogen exchange axis underlying sorafenib resistance in FLT3-ITD + AML. Blood. 2014; 123(16): 2530-9.

Copyright (c) 2015 PJSC Human Stem Cells Institute

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 57156 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies