Experimental and Morphological study of the xenogenic biological membranes



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In the last decade barrier the application of different types of membranes in the oral and maxillofacial surgery has been increasing. Their main reliability features include resorption times, the lack of toxic and antigenic effects, the absence of negative effects from the membrane on the structure of the surrounding soft tissues, as well as a high degree of biointegration and a potentiality of steady stabilization in the wound. Considering the abovementioned parameters, graft barrier membranes are a material of choice in the modern reconstructive oral and maxillofacial surgery. The present study includes an experimental and morphological assessment of biologic xenogenic barrier membranes for the evaluation of their immunological potency and the time of biodegradation using a model test system in vivo. Three groups of barrier membranes were assayed - M-D (decellu-larized diaphragm), M-P (pericardium), M-DM (dura mater), prepared from the corresponding tissues of a mature ox, in accordance to the method developed in the Priorov Central Research Institute of Traumatology and Orthopaedics. The experiments were carried out on a model of 6-week heterotopic subcutaneous implantation in rats and included a complex histological and immunohistochemical analysis, with quantitative estimation of biograft mineralization by adsorption spectroscopy. It was found that: the material of M-DM has the highest and fullest (while retaining the strength properties) resorption; a relatively long bi-odegradation time, expressed conductive effect and constraint function are specific for the М-Р material; M-D membranes have faster resorption, enhanced thinning and relative biological inertness. The results of the conducted study indicate that all the implanted materials are biocompatible and efficient, and thus may be used in various medical cases.

Full Text

Restricted Access

About the authors

A. Yu Ryabov

Dentisrty center «Interdentos»

Korolev, Russia

I. S Fadeeva

Institute of Theoretical and Experimental Biophisics of RAS; Pushchino State Institute of Natural Sciences

Pushchino, Russia

R. V Deev

Human Stem Cells Institute

Moscow, Russia

N. O Vezhnina

Institute of Theoretical and Experimental Biophisics of RAS

Pushchino, Russia

Yu. B Yurasova

Russian Children Clinical Hospital

Moscow, Russia

N. I Fesenko

Pushchino State Institute of Natural Sciences

Pushchino, Russia

V. V Guriev

A.I. Evdokimov Moscow State University of Medicine and Dentistry

Moscow, Russia

E. D Sklyanchuk

A.I. Evdokimov Moscow State University of Medicine and Dentistry; «Bio-Medical» Co. Ltd.

Moscow, Russia

M. V Lekishvili

N.N. Priorov Central Institute of Traumatology and Orthopedics; «Bio-Medical» Co. Ltd.

Moscow, Russia

V. S Akatov

Institute of Theoretical and Experimental Biophisics of RAS; Pushchino State Institute of Natural Sciences; «Bio-Medical» Co. Ltd.

Moscow,Pushchino, Russia

References

  1. da Silva Pereira S.L., Sallum A.W., Casati M.Z. et al. Comparison of bioabsorbable and non-resorbable membranes in thetreatment of dehiscence-type defects. A histomorphometric study in dogs. Periodontology 2000; 71: 1306-14.
  2. Vignoletti F., Nunez J., Sanz M. Soft tissue wound healing at teeth, dental implants and the edentulous ridge when using barrier membranes, growth and differentiation factors and soft tissue substitutes. J. Clin. Periodontol. 2014; 41(15]: S23-35.
  3. Kao D.W., Fiorellini J.P. Regenerative periodontal therapy. Front. Oral. Biol. 2012; 15: 149-59.
  4. Retzepi M., Donos N. Guided bone regeneration: biological principle and therapeutic applications. Clin. Oral. Implants Res. 2010; 21(6]: 567-76.
  5. Hammerle C.H., Giannobile W.V. Biology of soft tissue wound healing and regeneration--consensus report of Group 1 of the 10th European Workshop on Periodontology. Working Group 1 of the European Workshop on Periodontology. J. Clin. Periodontol. 2014; 41(S15]: S1-5.
  6. Duskova M., Leamerova E., Sosna B. et al. Guided tissue regeneration, barrier membranes and reconstruction of the cleft maxillary alveolus. J. Craniofac. Surg. 2006; 17t6]: 1153-60.
  7. Лекишвили М.В., Васильев М.Г., Рябов А.Ю. и др. Способ получения коллагеновых имплантатов. Патент РФ №2360690. 15 апреля 2008.
  8. Панкратов А.С., Древаль А.С., Пылаев В.М. и др. Использование остеопластических материалов при лечении нагноившейся костной раны нижней челюсти в эксперименте. Российский стоматологический журнал 2000; 5: 4-6.
  9. Просвирин А.А., Склянчук Е.Д., Гурьев В.В. и др. Физикохимические свойства и биосовместимость наноструктурированного пористого костного имплантата. Технологии живых систем 2013; 10(8]: 68-73.
  10. Акатов В.С., Фадеева И.С., Чеканов А.В. и др. Роль клеток реципиента в механизме патологической кальцификации трансплантатов клапанов сердца и сосудов. Биофизика 2010; 55(5]: 937-42.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies