Delivery of nerve growth factor (NGF) gene via recombinant plasmid vector induces angiogenesis in murine ischemic hind limb
- Authors: Boldyreva M.A1, Makarevich P.I1, Rafieva L.M2, Beloglazova I.B1, Dergilev K.V1, Kostrov S.V2, Parfyonova Y.V1
-
Affiliations:
- Russian Cardiology Research and Production Complex
- Institute of Molecular Genetics of RAS
- Issue: Vol 9, No 4 (2014)
- Pages: 81-87
- Section: Articles
- URL: https://genescells.ru/2313-1829/article/view/120394
- DOI: https://doi.org/10.23868/gc120394
- ID: 120394
Cite item
Abstract
Keywords
Full Text

About the authors
MA. A Boldyreva
Russian Cardiology Research and Production ComplexMoscow, Russia
P. I Makarevich
Russian Cardiology Research and Production ComplexMoscow, Russia
L. M Rafieva
Institute of Molecular Genetics of RASMoscow, Russia
I. B Beloglazova
Russian Cardiology Research and Production ComplexMoscow, Russia
K. V Dergilev
Russian Cardiology Research and Production ComplexMoscow, Russia
S. V Kostrov
Institute of Molecular Genetics of RASMoscow, Russia
Ye. V Parfyonova
Russian Cardiology Research and Production ComplexMoscow, Russia
References
- Roger V.L., Go A.S., Lloyd-Jones D.M. et al. Executive summary: heart disease and stroke statistics--2012 update: a report from the American Heart Association. Circulation 2012; 125(1): 188-97.
- Gupta R., Tongers J., Losordo D.W. Human studies of angiogenic gene therapy. Circ. Res. 2009; 105(8): 724-36.
- Парфенова Е.В., Ткачук В.А. Перспективы генной терапии сердечно-сосудистых заболеваний. Вопросы медицинской химии 2000; 46(3): 293-310.
- Парфенова Е.В., Ткачук В.А. Терапевтический ангиогенез: достижения, проблемы, перспективы. Кардиологический вестник 2007; 2(2): 4-12.
- Шевченко Е.К., Талицкий К.А., Парфенова Е.В. Перспективы повышения эффективности генной и клеточной терапии сердечнососудистых заболеваний: генетически модифицированные клетки. Клеточная трансплантология и тканевая инженерия 2010; V(2): 19-28.
- Korpisalo P., Yla-Herttuala S. Stimulation of functional vessel growth by gene therapy. Integr. Biol. (Camb.). 2010; 2(2-3): 102-12.
- Robich M.P., Chu L.M., Oyamada S. et al. Myocardial therapeutic angiogenesis: a review of the state of development and future obstacles. Expert. Rev. Cardiovasc. Ther. 2011; 9(11): 1469-79.
- Giacca M., Zacchigna S. VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Therapy 2012; 19: 622-9.
- Mughal N.A., Russell D.A., Ponnambalam S. et al. Gene therapy in the treatment of peripheral arterial disease. Br. J Surg. 2012; 99(1): 6-15.
- Madonna R., Rokosh G. Insights into gene therapy for critical limb ischemia: the devil is in the details. Vascul. Pharmacol. 2012; 57(1): 10-4.
- Forsythe R.O., Hinchliffe R.J. Management of peripheral arterial disease and the diabetic foot. J. Cardiovasc. Surg. (Torino). 2014; 55(2 Suppl 1): 195-206.
- El-Helou V., Proulx C., Gosselin H. et al. Dexamethasone treatment of post-MI rats attenuates sympathetic innervation of the infarct region. J. Appl. Physiol. (1985) 2008; 104(1):150-6.
- Gupta S.C., Kim J.H., Prasad S. et al. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev. 2010; 29(3): 405-34.
- Ouma G.O., Zafrir B., Mohler E.R. 3rd et al. Therapeutic Angiogenesis in Critical Limb Ischemia. Angiology 2013; 64(6): 466-80.
- Powell R.J. Update on clinical trials evaluating the effect of biologic therapy in patients with critical limb ischemia. J. Vasc. Surg. 2012; 56(1): 264-6.
- Zachary I. Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neurosignals 2005; 14(5): 207-21.
- Kundi S., Bicknell R., Ahmed Z. The role of angiogenic and wound-healing factors after spinal cord injury in mammals. Neurosci. Res. 2013; 76(1-2): 1-9.
- Efimenko A. Yu., Kochegura T. N., Akopyan Zh. A. et al. Autologous stem cell therapy: how aging andcChronic diseases affect stem and progenitor cells. 2015. BioResearch Open Access Vol. 4.1. doi: 10.1089/biores.2014.0042.
- Levi-Montalcini R., Hamburger V. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J. Exp. Zool. 1951; 116(2): 321-61.
- Moser K.V., Reindl M., Blasig I. et al. Brain capillary endothelial cells proliferate in response to NGF, express NGF receptors and secrete NGF after inflammation. Brain Res. 2004; 1017: 53-60.
- Rahbek U.L., Dissing S., Thomassen C. et al. Nerve growth factor activates aorta endothelial cells causing PI3K/Akt- and ERK-dependent migration. Pflugers Arch. 2005; 450: 355-61.
- Ribatti D., Nico B., Vacca A. et al. The gelatin sponge-chorioallantoic membrane assay. Nat. Protoc. 2006; 1(1): 85-91.
- Caroleo M.C., Costa N., Bracci-Laudiero L. et al. Human monocyte/macrophages activate by exposure to LPS overexpress NGF and NGF receptors. J. Neuroimmunol. 2001; 113(2): 193-201.
- Calza L., Giardino L., Giuliani A. et al. Nerve growth factor control of neuronal expression of angiogenetic and vasoactive factors. PNAS USA 2001; 98: 4160-5.
- Tuveri M., Generini S., Matucci-Cerinic M. et al. NGF, a useful tool in the treatment of chronic vasculitic ulcers in rheumatoid arthritis. Lancet 2000; 356(9243): 1739-40.
- Сафина Д. Р., Рафиева Л. М., Коваль А. В. и соавт. Олигомерная организация рекомбинантных нейротрофинов человека, экспрессированных в клетках Escherichia coli. Биоорг. Химия 2008; 34(3): 327-32.
- Takeshita S., Isshiki T., Ochiai M. et al. Endothelium-dependent relaxation of collateral microvessels after intramuscular gene transfer of vascular endothelial growth factor in a rat model of hindlimb ischemia. Circulation 1998; 98(13): 1261-3.
- Traktuev D.O., Tsokolaeva Z.I., Shevelev A.A. et al. Urokinase gene transfer augments angiogenesis in ischemic skeletal and myocardial muscle. Mol. Ther. 2007; 15(11): 1939-46.
- Макаревич П.И., Шевелев А.Я., Рыбалкин И.Н. и соавт. Новые плазмидные конструкции, предназначенные для терапевтического ангиогенеза и несущие гены ангиогенных факторов роста - VEGF, HGF и ангиопоэтина-1. Клеточная трансплантология и тканевая инженерия 2010; V(1): 47-52.
- Makarevich P., Tsokolaeva Z., Shevelev A. et al. Combined transfer of human VEGF165 and HGF genes renders potent angiogenic effect in ischemic skeletal muscle. PLoS One 2012; 7(6): e38776.
- Boyce V.S., Mendell L.M. Neurotrophins and spinal circuit function. Front. Neural Circuits 2014; 8: 59.
- Bothwell M. NGF, BDNF, NT3, and NT4. Handb. Exp. Pharmacol. 2014; 220: 3-15.
- Allen S.J., Watson J.J., Shoemark D.K. et al. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol. Ther. 2013; 138(2): 155-75.
- Ieda M., Kimura K., Kanazawa H. et al. Regulation of cardiac nerves: a new paradigm in the management of sudden cardiac death? Curr. Med. Chem. 2008; 15(17): 1731-6.
- Tonchev A.B. Brain ischemia, neurogenesis, and neurotrophic receptor expression in primates. Arch. Ital. Biol. 2011; 149(2): 225-31.
- Lazarovici P., Gazit A., Staniszewska I. et al. Nerve growth factor (NGF) promotes angiogenesis in the quail chorioallantoic membrane. Endothelium 2006; 13(1): 51-9.
- Varon S., Conner J.M. Nerve growth factor in CNS repair. J. Neurotrauma 1994; 11(5): 473-86.
- Emanueli C., Salis M.B., Pinna A. et al. Nerve growth factor promotes angiogenesis and arteriogenesis in ischemic hindlimbs. Circulation 2002; 106(17): 2257-62.
- Orike N., Middleton G., Borthwick E. et al. Role of PI 3-kinase, Akt and Bcl-2-related proteins in sustaining the survival of neurotrophic factor-independent adult sympathetic neurons. J. Cell Biol. 2001; 154(5): 995-1005.
- Zubkova E., Semenkova L., Dudich E. et al. Alpha-fetoprotein contributes to THP-1 cell invasion and chemotaxis via protein kinase and Gi-protein-dependent pathways. Mol. Cell. Biochem. 2013; 379(1-2): 283-93.
