H. pylori, mikrobiota kishechnika, antibiotikorezistentnost': est' li vzaimosvyaz'?

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Helicobacter pylori (H. pylori) eradication is obligatory in case of such diseases as gastric and duodenal ulcer, atrophic gastritis, MALT lymphoma, in patients after gastrectomy due to the gastric cancer, as well as in close relatives of gastric canсer patients. Antibacterial therapy which is aimed at the eradication of H. pylori has an impact on the intestinal microbiotа leading to its qualitative and quantitative disturbances. The review focuses on the influence of H. pylori and eradication therapy on the content of the intestinal microbiota, their role in the development of intestinal microbiota resistance to antibiotics. Both H. pylori itself and eradication therapy can lead to the changes of gut microbiota content, which are characterized by reduction in microorganisms diversity; decrease in the number of obligate anaerobes, prevailing in normal gut; increase in the number of facultative aerobic microorganisms. Long-term effect of antibiotic therapy is the development of antibiotic-resistant strains of bacteria. Resistance may be due to the presence of the resistance genes in bacteria, which they have acquired through mutations or horizontal transfer. These genes can be spread not only among pathogenic bacteria, due to the presence of which antibacterial therapy is carried out, but also among the members of the normal microflora, which can then be modified and loose its beneficial properties. Thus the intestinal microflora may serve as a potential reservoir of resistance genes and contribute to the development of antibiotics resistance through other members of the human microbiota.

Full Text

Restricted Access

References

  1. Malfertheiner P., Megraud F., O'Morain C.A. et al. Management of Helicobacter pylori infection-the Maastricht IV. Florence Consensus Report. Gut. 2012; 61(5): 646-64.
  2. Adamsson I., Nord C.E., Lundquist P. et al. Comparative effects of omeprazole, amoxycillin plus metronidazole versus omeprazole, clarithromycin plus metronidazole on oral, gastric and intestinal microflora in Helicobacter pylori-infected patients. J. Antimicrob. Chemother. 1999; 44(5): 629-40.
  3. Buhling A., Radun D., Muller W.A. et al. Influence of anti-Helicobacter triple-therapy with metronidazole, omeprazole and clarithromycin on intestinal microflora. Aliment. Pharmacol. Ther. 2001; 15(9): 1445-52.
  4. Lou J.G., Chen J., Huang X.L. et al. Changes in the intestinal microflora of children with Helicobacter pylori infection and after Helicobacter pylori eradication therapy. Chin. Med. J. 2007; 120(10): 929-31.
  5. Tanaka J., Fukuda Y., Shintani S. et al. Influence of antimicrobial treatment for Helicobacter pylori infection on the intestinal microflora in Japanese macaques. J. Med. Microbiol. 2005; 54: 309-14.
  6. Guarner F. Enteric flora in health and disease. Digestion 2006; 73(Suppl 1): 5-12.
  7. Backhed F., Ley R.E., Sonnenburg J.L. et al. Host-bacterial mutualism in the human intestine. Science 2005; 307: 1915-20.
  8. Jernberg C., Lofmark S., Edlund C. et al. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 2010; 156 (Pt 11): 3216-23.
  9. Myllyluoma E., Ahlroos T., Veijola L. et al. Effects of anti-Helicobacter pylori treatment and probiotic supplementation on intestinal microbiota. Int. J. Antimicrob. Agents. 2007; 29(1): 66-72.
  10. Yang Y.J., Sheu B.S. Probiotics-containing yogurts suppress Helicobacter pylori load and modify immune response and intestinal microbiota in the Helicobacter pylori-infected children. Helicobacter 2012; 17(4): 297-304.
  11. Jakobsson H.E., Jernberg C., Andersson A.F. et al. Short-Term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE 2010; 5(3): e9836.
  12. Eckburg P.B., Bik E. M., Bernstein C.N. et al. Diversity of the human intestinal microbial flora. Science 2005; 308: 1635-8.
  13. Finegold S.M. Anaerobic infections in humans: an overview. Anaerobe 1995; 1(1): 3-9.
  14. Rolain J-M. Food and human gut as reservoirs of transferable antibiotic resistance encoding genes. Antibiotic resistance in food and human gut. Front. Microbiol. 2013; 24(4):173.
  15. Sullivan A., Edlund C., Nord, C.E. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect. Dis. 2001; 1: 101-14;
  16. Jernberg C., Lofmark S., Edlund C. et al. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007; 1: 56-66;
  17. Cresti S., Lattanzi M., Zanchi A. et al. Resistance determinants and clonal diversity in group A streptococci collected during a period of increasing macrolide resistance. Antimicrob. Agents. Chemother. 2002; 46: 1816-22.
  18. Sommer M.O., Dantas G., Church G.M. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 2009; 325: 1128-31.
  19. Cheng G., Hu Y., Yin Y. et al. Functional screening of antibiotic resistance genes from human gut microbiota reveals a novel gene fusion. FEMS Microbiol. Lett. 2012; 336(1): 11-6.
  20. Karami N., Nowrouzian F., Adlerberth I. et al. Tetracycline resistance in Escherichia coli and persistence in the infantile colonic microbiota. Antimicrob. Agents Chemother. 2006; 50(1): 156-61.
  21. Roy S., Viswanathan R., Singh A. et al. Gut colonization by multidrug-resistant and carbapenem-resistant Acinetobacter baumannii in neonates. Eur. J. Clin. Microbiol. Infect. Dis. 2010; 29(12): 1495-500.
  22. Bailey J.K., Pinyon J.L., Anantham S. et al. Commensal Escherichia coli of healthy humans: a reservoir for antibiotic-resistance determinants. J. Med. Microbiol. 2010; Nov; 59(Pt 11): 1331-9.
  23. Forslund K., Sunagawa S., Kultima J.R. et al. Country-specific antibiotic use practices impact the human gut resistome. Genome research 2013; 23 (7): 1163-9.
  24. Gustafson R.H., Bowen R.E. Antibiotic use in animal agriculture. J. Appl. Microbiol. 1997; 83 (5): 531-41.
  25. Smillie C.S., Smith M.B., Friedman J. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 2011; 480(7376): 241-4.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies