Pathohistological assessment of skeletal muscle after direct gene therapy with vegf165 of patients with peripheral arterial diseases

Cite item


The aim was to elucidate impact of gene therapy with plasmid encoding vegf165 on the muscle tissue pathohistology of patients with peripheral arterial diseases. Twice repeated intramuscular injections of plasmid («Neovaskulgen», RN LP-000671 from 28.09.2011) were performed to 6 patients (ischemia grade IIb-III by Pokrovsky-Fontaine) according to specification. Standart tredmill test, ankle-brachial index estimation were performed. Histological study of injured muscle biopsies taken before and 3 months after injection was performed. In intact muscles therapy with vegf165 leads to increase of mean cross-sectional muscle fiber area without significant angiogenic effect. In muscles with decreased capillary density this therapy leads to blood supply improvement promoting regeneration of muscles by myosatellites proliferation and increase of mean cross-sectional muscle fiber area and connective tissue degradation. Treadmill test showed painless walking distance increased by 31,74% on average (from 94,96±49,79 m to 139,11±60,78 m, p<0,05) in all patients. There was correlation of pathohistological analysis with clinical data.

Full Text

Restricted Access

About the authors

M. O Mavlikeev

Kazan (Volga region) Federal University

M. V Plotnikov

Republic Clinical Hospital of Republic of Tatarstan; Kazan State Medical Academy

A. V Maksimov

Republic Clinical Hospital of Republic of Tatarstan; Kazan State Medical Academy

G. R Gafiyatullina

Kazan (Volga region) Federal University

A. I Murtazin

Kazan State Medical University

U. E Teregulov

Republic Clinical Hospital of Republic of Tatarstan

I. I Shamsutdinova

Republic Clinical Hospital of Republic of Tatarstan

A. A Gumerova

Kazan (Volga region) Federal University

A. A Rizvanov

Kazan (Volga region) Federal University

A. P Kiassov

Kazan (Volga region) Federal University


  1. Fowkes G.R., Rudan D., Rudan I. et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. The Lancet 2013; 382: 1329-40.
  2. Muluk S.C., Muluk V.S., Kelley M.E. et al. Outcome events in patients with claudication: A 15-year study in 2777 patients. J. Vasc. Surg. 2001; 33: 251-258.
  3. Hirsch A.T., Haskal Z.J., Hertzer N.R. et al. ACC/AHA 2005 Guidelines for the Management of Patients with Peripheral Arterial Disease [Lower Extremity, Renal, Mesenteric, and Abdominal Aortic): A Collaborative Report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease) J. Am. Coll. Cardiol. 2006; 47: 1-192.
  4. Национальные рекомендации по ведению пациентов с заболеваниями артерий нижних конечностей. М., 2013: 35.
  5. Швальб П.Г., Гавриленко А.В., Калинин Р.Е. и др. Эффективность и безопасность применения препарата «Неоваскул-ген» в комплексной терапии пациентов с хронической ишемией нижних конечностей (IIb-III фаза клинических испытаний) Клеточная трансплантология и тканевая инженерия 2011; VI (3): 76-83.
  6. Ishido M., Kami K., Masuhara M. Localization of MyoD, myogenin and cell cycle regulatory factors in hypertrophying rat skeletal muscles. Acta Physiol. Scand. 2004; 180 (3): 281-9
  7. Мавликеев М.О., Андреева Д.И., Газизов И.М. с соавт. Регенерация мышечной ткани и активация миосателлитоцитов при аутотрансплантации стволовых клеток периферической крови пациентам с хроническими облитерирующими заболеваниями артерий нижних конечностей. Клеточная трансплантология и тканевая инженерия 2010; V (4): 79-84.
  8. Bryan B.A., Walshe T.E., Mitchell D.C. et al. Coordinated vascular endothelial growth factor expression and signaling during skeletal myogenic differentiation. Mol. Biol. Cell 2008; 19 (3): 9941006.
  9. Zentilin L., Puligadda U., Lionetti V. et al. Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J. 2010; 24 (5):1467-78
  10. Arsic N., Zacchigna S., Zentilin L. et al. Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol. Ther. 2004; 10 (5): 844-54.
  11. Brooks N.E., Myburgh K.H. Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways. Front Physiol. 2014; 17(5): 99.
  12. Парфенова Е.В., Ткачук В.А. Терапевтический ангиогенез: достижения, проблемы, перспективы. Кардиологический вестник 2007; II (2): 5-14.

Copyright (c) 2014 PJSC Human Stem Cells Institute

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 57156 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies