Cell technologies for muscle tissue restoration. Part I: myocardium



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This review represents ongoing clinical studies devoted to recovery of heart muscle using cell technologies, as well as analysis of applied populations of cells.

Full Text

Restricted Access

About the authors

I. N. Korsakov

A. I. Burnazyan Federal Medical Biophysical Center FMBA of Russia

V. L. Zorin

A. I. Burnazyan Federal Medical Biophysical Center FMBA of Russia; Human Stem Cells Institute

I. I Eremin

A. I. Burnazyan Federal Medical Biophysical Center FMBA of Russia

A. I. Zorina

Human Stem Cells Institute

K. V. Kotenko

A. I. Burnazyan Federal Medical Biophysical Center FMBA of Russia; N. N. Blokhin Cancer Research Center

P. B. Kopnin

Human Stem Cells Institute; N. N. Blokhin Cancer Research Center

A. A. Pulin

A. I. Burnazyan Federal Medical Biophysical Center FMBA of Russia

References

  1. Wang Т. A. Survey of current landscape in regenerative medicine. Fast evolving field albeit accompanied by high risk. Mizuho Industry Focus 2013; 141: 1-39.
  2. Healing, Musculoskeletal, Eye, & Immune System) -regulatory landscape, pipeline analysis & global forecasts to 2020. http: //www. marketsandmarkets. com/Market-Reports/stem-cell-technologies-and-global-market-48. html; 2014.
  3. Nichols M., Townsend N., Luengo-Fernandez R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. European cardiovascular disease statistics. Sophia antipolis: European Heart Network, Brussels; 2012.
  4. Lozano R., Naghavi M., Foreman K. et al. Executive summary: heart disease and stroke statistics - 2013 update: a report from the American Heart Association. Lancet 2012; 380 (9859): 2095-128.
  5. Go A. S., Mozaffarian D., Roger V. L. et al. American heart association statistics committee and stroke statistics subcommittee. Circulation 2013; 127: 143-52.
  6. Smits P. C., van Geuns R-J. M., Poldermans D. et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J. Am. Coll. Cardiol. 2003; 42: 2063-9.
  7. Steendijk P., Smits P. C., Valgimigli M. et al. Intramyocardial injection of skeletal myoblasts: long-term follow-up with pressure-volume loops. Nat. Clin. Pr. Cardiovasc. Med. 2006; 3 Suppl 1: S94-100.
  8. Menasche P., Hagege A. A., Vilquin J-T et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J. Am. Coll. Cardiol. 2003; 41: 1078-83.
  9. Menasche P., Alfieri O., Janssens S. et al. The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 2008; 117: 1189-200.
  10. Veltman C. E., Soliman O. I., Geleijnse M. L. et al. Four-year follow-up of treatment with intramyocardial skeletal myoblasts injection in patients with ischaemic cardiomyopathy. Eur. Heart J. 2008; 29: 1386-96.
  11. Duckers H. J., Houtgraaf J., Hehrlein C. et al. Final results of a phase IIa, randomised, open-label trial to evaluate the percutaneous intramyocardial transplantation of autologous skeletal myoblasts in congestive heart failure patients: the SEISMIC trial. EuroIntervention 2011; 6: 805-12.
  12. Bioheart Inc. Bioheart announces clinical trials in India. http: //www. bioheartinc. com/assets/press/BIOHEARTANNOUNCESCLINICA LTRIALSININDIA. pdf; 2014
  13. Kamihata H., Matsubara H., Nishiue T. et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 2001; 104: 1046-52.
  14. Kamihata H., Matsubara H., Nishiue T. et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 2001; 104: 1046-52.
  15. Schachinger V., Erbs S., Elsasser A. et al. Improved clinical outcome after intracoronary administration ofbone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur. Heart J. 2006; 27: 2775-83.
  16. Schachinger V., Erbs S., Elsasser A. et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med. 2006; 355: 1210-21.
  17. Dill T., Schachinger V., Rolf A. et al. Intracoronary administration of bone marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-segment elevation myocardial infarction: results of the reinfusion of enriched progenitor cells and infarct remodeling in acute myocardial infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy. Am. Heart J. 2009; 157: 541-7.
  18. Assmus B., Rolf A., Erbs S. et al. Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ. Heart Fail. 2010; 3: 89-96.
  19. Beitnes J. O., Hopp E., Lunde K. et al. Long-term results after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction: the ASTAMI randomised, controlled study. Heart 2009; 95: 1983-9.
  20. Wollert K. C., Meyer G. P., Lotz J. et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004; 364: 141-8.
  21. Meyer G. P., Wollert K. C., Lotz J. et al. Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. Eur. Heart J. 2009; 30: 2978-84.
  22. Hirsch A., Nijveldt R., van der Vleuten P. A. et al. Intracoronary infusion of mononuclear cells from bone marrow or peripheral blood compared with standard therapy in patients after acute myocardial infarction treated by primary percutaneous coronary intervention: results of the randomized controlled HEBE. Eur. Hear. J. 2011; 32: 1736-47
  23. Traverse J. H., Henry T. D., Pepine C. J. et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA 2012; 308: 2380-9.
  24. Tendera M., Wojakowski W., Ruzytto W. et al. Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre myocardial regeneration by intracor. Eur. Heart J. 2009; 30: 1313-21.
  25. Surder D., Manka R., Lo Cicero V. et al. Intracoronary injection of bone marrow derived mononuclear cells, early or late after acute myocardial infarction: effects on global left ventricular function four months results of the SWISS-AMI trial. Circulation 2013; 127: 1968-79.
  26. Wen Y., Chen B., Wang C. et al. Bone marrow-derived mononuclear cell therapy for patients with ischemic heart disease and ischemic heart failure. Expert Opin. Biol. Ther. 2012; 12: 1563-73.
  27. Perin E. C., Willerson J. T., Pepine C. J. et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA 2012; 307: 1717-26.
  28. Beeres S. L. M., Bax J. J., Dibbets-Schneider P. et al. Intramyocardial injection of autologous bone marrow mononuclear cells in patients with chronic myocardial infarction and severe left ventricular dysfunction. Am. J. Cardiol. 2007; 100: 1094-8.
  29. Hendrikx M., Hensen K., Clijsters C. et al. Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial. Circulation 2006; 114: I101-7.
  30. Williams A. R., Hare J. M. Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ. Res. 2011; 109: 923-40.
  31. Choi Y-H., Kurtz A., Stamm C. Mesenchymal stem cells for cardiac cell therapy. Hum. Gene Ther. 2011; 22: 3-17.
  32. Williams A. R., Trachtenberg. B, Velazquez D. L. et al. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ. Res. 2011; 108: 792-6.
  33. Chen S., Fang W., Ye F. et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am. J. Cardiol. 2004; 94: 92-5.
  34. Heldman A. W., Difede D. L., Fishman J. E. et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA 2014; 311 (1): 62-73.
  35. Penn M. S., Ellis S., Gandhi S. et al. Adventitial delivery of an allogeneic bone marrow-derived adherent stem cell in acute myocardial infarction: phase I clinical study. Circ. Res. 2012; 110 (2): 304-11.
  36. Hare J. M., Traverse J. H., Henry T. D. et al. A randomized, double-blind, placebocontrolled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J. Am. Coll. Cardiol. 2009; 54: 2277-22.
  37. Prochymal® (Human Adult Stem Cells) Intravenous Infusion Following Acute Myocardial Infarction (AMI), http: //clinicaltrials. gov/ show/NCT00877903.
  38. Percutaneous stem cell injection delivery effects on neomyogenesis in dilated cardiomyopathy (POSEIDON-DCM), http: // clinicaltrials. gov/show/NCT01392625.
  39. The transendocardial stem cell injection delivery effects on neomyogenesis study (Trident), http: //clinicaltrials. gov/show/ NCT02013674.
  40. Hare J. M., Fishman J. E., Gerstenblith G. et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 2012; 308: 2369-79.
  41. Mesoblast Ltd. Preliminary final report For the year ending 30 June 2014, http: //ir. mesoblast. com/DownloadFile. axd?file=/ Report/ComNews/20140826/01546079. pdf.
  42. Bartunek J., Behfar A., Dolatabadi D. et al. Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem cell therapy in heart failure) multicenter randomized trial with lineage-specified biologics. J. Am. Coll. Cardiol. 2013; 61 (23): 2329-38.
  43. Yoshimura K., Suga H., Eto H. Adipose-derived stem/progenitor cells: roles in adipose tissue remodeling and potential usefor soft tissue augmentation. Regen. Med. 2009; 4 (2): 265-73.
  44. Tiryaki T., Findikli N., Tiryaki D. Staged stem cell-enriched tissue (SET) injections for soft tissue augmentation in hostile recipient areas: a preliminary report. Aesth. Plast. Surg. 2011; 35 (6): 965-71.
  45. Yoshimura K., Sato K., Matsumoto D. Cell-assisted lipotransfer for breast augmentation: grafting of progenitor-enriched fat tissue autologous fat transfer. In: Autologousfattransfer. Springer 2010; P. 261-71.
  46. Houtgraaf J. H., den Dekker W. K., van Dalen B. M. et al. First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 2012; 59: 539-40.
  47. Perin E. C., Sanz-Ruiz R., Sanchez P. L. et al. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: The PRECISE Trial. Am. Heart J. 2014; 168: 88-95.
  48. Safety and efficacy of adipose derived regenerative cells (ADRCs) delivered via the intracoronary route in the treatment of patients with ST-elevation acute myocardial infarction [ADVANCE), http: //clinicaltrials. gov/show/NCT01216995.
  49. Safety and feasibility trial of adipose-derived regenerative cells in the treatment of chronic myocardial ischemia (ATHENA), http: // clinicaltrials. gov/show/NCT01556022.
  50. Safety & efficacy of adipose-derived regenerative cells in the treatment of chronic myocardial ischemia (ATHENA II), http: // clinicaltrials. gov/show/NCT02052427.
  51. Bioheart Inc. announces update on phase i adipose stem cell trial, http: //www. bioheartinc. com/assets/press/3PHASEIADIPOSES TEMCELLTRIAL. pdf.
  52. Kocher A. A., Schuster M. D., Szabolcs M. J. et al. Neovascularization of ischemic myocardium by human bone marrow-derived angioblasts prevents cardiomyocyte apoptosis, reducesremodeling and improves cardiac function. Nat. Med. 2001; 7: 430-6.
  53. Orlic D., Kajstura J., Chimenti S. et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410: 701-5.
  54. Schachinger V., Assmus B., Britten M. B. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J. Am. Coll. Cardiol. 2004; 44: 1690-9.
  55. Bartunek J., Vanderheyden M., Vandekerckhove B. et al. Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation 2005; 112: I178-83.
  56. Li Z., Zhang M., Jing Y. et al. The clinical study of autologous peripheral blood stem cell transplantation by intracoronary infusion in patients with acute myocardial infarction. Int. J. Cardiol. 2007; 115: 52-6.
  57. Quyyumi A. A., Waller E. K., Murrow J. et al. CD34 (+) cell infusion after ST elevation myocardial infarction is associated with improved perfusion and is dose dependent. Am. Heart J. 2011; 161: 98-105.
  58. Losordo D. W., Henry T. D., Davidson C. et al. Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ. Res. 2011; 109 (4): 428-36.
  59. Mansour S., Roy D. C., Bouchard V. One-year safety analysis of the COMPARE-AMI Trial: comparison of intracoronary injection of CD133 bone marrow stem cells to placebo in patients after acute myocardial infarction and left ventricular dysfunction. Bone Marrow Res. 2011; 2011: 385124.
  60. Forcillo J., Stevens L. M., Mansour S. et al. Implantation of CD133+ stem cells in patients undergoing coronary bypass surgery: IMPACT-CABG pilot trial. Can. J. Cardiol. 2013; 29: 441-7.
  61. AMR-001 versus placebo post ST-segment elevation myocardial infarction (PreSERVE-AMI), http: //clinicaltrials. gov/show/ NCT01495364.
  62. Nasseri B. A., Ebell W., Dandel M. et al. Autologous CD133+ bone marrow cells and bypass grafting for regeneration of ischaemic myocardium: the Cardio133 trial. Eur. Heart J. 2014; 35: 1263-74.
  63. Li T-S., Cheng K., Malliaras K. et al. Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J. Am. Coll. Cardiol. 2012; 59: 942-53.
  64. Makkar R. R., Smith R. R., Cheng K. et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomized phase 1 trial. Lancet 2012; 379: 895-904.
  65. Malliaras K., Makkar R. R., Smith R. R. et al. Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (Cardiosphere-derived autologous stem cells to reverse ventricular dysfunction). J. Am. Coll. Cardiol. 2014; 63: 110-22.
  66. Allogeneic heart stem cells to achieve myocardial regeneration (ALLSTAR), http: //clinicaltrials. gov/show/NCT01458405.
  67. Bartel R. L., Cramer C., Ledford K. et al. The Aastrom experience. Stem Cell Res. Ther. 2012; 3: 26.
  68. Shireman P. K. The chemokine system in arteriogenesis and hind limb ischemia. J. Vasc. Surg. 2007; 45 Suppl A: A48-56.
  69. van Weel V., van Tongeren R. B., van Hinsbergh V. W. et al. Vascular growth in ischemic limbs: a review of mechanisms and possible therapeutic stimulation. Ann. Vasc. Surg. 2008; 2: 582-97.
  70. Henry T. D., Traverse J. H., Hammon B. L. et al. Safety and efficacy of ixmyelocel-T: an expanded, autologous multi-cellular therapy, in dilated cardiomyopathy. Circ. Res. 2014; 115: 730-7.
  71. Use of Ixmyelocel-T (Formerly Catheter-based cardiac repair cell [CRC]) treatment in patients with heart failure due to dilated cardiomyopathy, http: //clinicaltrials. gov/show/NCT01020968.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies