The models for the study of biological properties of human hematopoietic stem cells

Cover Page
  • Authors: Ustyugov A.Y.1, Rumyantsev S.A2
  • Affiliations:
    1. D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, MH of Russia, Moscow, Russia N.I. Pirogov Russian National Research Medical University, MH of Russia, Moscow, Russia
    2. D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, MH of Russia, Moscow, Russia N.I. Pirogov Russian National Research Medical University, MH of Russia, Moscow, Russia Moscow Institute of Physics and Technology (State University), Moscow, Russia
  • Issue: Vol 9, No 1 (2014)
  • Pages: 15-22
  • Section: Articles
  • URL: https://genescells.ru/2313-1829/article/view/120240
  • DOI: https://doi.org/10.23868/gc120240
  • ID: 120240

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article describes different experimental in vivo models applied to achieve knowledge of hemopoiesis and stem cell source-dependent mechanisms of engraftment. Although all the models have relative advantages and drawbacks, they all have one common feature - the cord blood engraftment kinetics are better, than those of bone marrow stem cells, while those are superior to peripheral blood mobilized stem cells. In spite of all the progress achieved by prolonged research, the cause of relatively low level of the human cells generated in these models is still unclear. The solution to this problem may be found with the aid of gene engineering achievements.

About the authors

A. Yu Ustyugov

D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, MH of Russia, Moscow, Russia N.I. Pirogov Russian National Research Medical University, MH of Russia, Moscow, Russia

S. A Rumyantsev

D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, MH of Russia, Moscow, Russia N.I. Pirogov Russian National Research Medical University, MH of Russia, Moscow, Russia Moscow Institute of Physics and Technology (State University), Moscow, Russia

References

  1. Zanjani E.D., Almeida-Porada G., Flake A.W. The human/sheep xenograft model: a large animal model of human hematopoiesis. Int. J. Hematol. 1996; 63: 179-92.
  2. Zanjani E.D., Almeida-Porada G., Ascensao J.L. et al. Transplantation of hematopoietic stem cells in utero. Stem Cells 1997; 15: 79-92.
  3. Zanjani E.D. The human sheep xenograft model for the study of the in vivo potential of human HSC and in utero gene transfer. Stem Cells 2000; 18: 151.
  4. Mosier D.E. Humanizing the mouse. Semin. Immunol. 1996; 8: 185-268.
  5. Dick J.E. Human stem cell assays in immune-deficient mice. Curr. Opin. Hematol. 1996; 3: 405-9.
  6. Dao M.A., Nolta J.A. Use of the bnx/hu xenograft model of human hematopoiesis to optimize methods for retroviral-mediated stem cell transduction. Int. J. Mol. Med. 1998; 1: 257-64.
  7. Morrison S., Uchida N., Weissman I. The biology of hematopoietic stem cells. Ann. Rev. Cell. Dev. Biol. 1995; 1: 35-71.
  8. Ogawa M. Differentiation and proliferation of hematopoietic stem cells. Blood 1993; 81: 2844-53.
  9. Orlic D., Bodine D.M. What defines a pluripotent hematopoietic stem cell tPHSC): Will the real PHSC please stand up? Blood 1994; 84: 3991-4.
  10. Weissman I.L. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 2000; 287: 1442-6.
  11. Reya Т., Morrison S.J., Clarke M.F. et al. Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105-11.
  12. Micklem H.S., Ford C.E., Evans E.P. et al. Competitive in vivo proliferation of foetal and adult haematopoietic cells in lethally irradiated mice. J. Cell. Physiol. 1972; 79: 293-303.
  13. Harrison D.E. Competitive repopulation: A new assay for longterm stem cell functional capacity. Blood 1980; 55: 77-81.
  14. Visser J.W., Bauman J.G., Mulder A.H. et al. Isolation of murine pluripotent hematopoietic stem cells. J. Exp. Med. 1984; 59: 1576-90.
  15. Spangrude G.J., Heimfeld S., Weissman I.L. Purification and characterization of mouse hematopoietic stem cells. Science 1988; 241: 58-62.
  16. Matthews W., Jordan C.T., Wiegand G.W. et al. A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Cell 1991; 65: 1143-52.
  17. Orlic D., Fischer R., Nishikawa S. et al. Purification and characterization of heterogeneous pluripotent hematopoietic stem cell populations expressing high levels of c-kit receptor. Blood 1993; 82: 762-70.
  18. Morrison S.J., Weissman I.L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1994; 8: 661-73.
  19. Jordan C.T., Lemischka I.R. Clonal and systemic analysis of long-term hematopoiesis in the mouse. Genes Dev. 1990; 4: 220-08.
  20. Turhan A.G., Humphries R.K., Phillips G.L. et al. Clonal hematopoiesis demonstrated by X-linked DNA polymorphisms after allogeneic bone marrow transplantation. N. Engl. J. Med. 1989; 320: 1655-61.
  21. Brenner M.K., Rill D.R., Holladay M.S. et al. Gene marking to determine whether autologous marrow infusion restores long-term haematopoiesis in cancer patients. Lancet 1993; 342: 1134-7.
  22. Dunbar C.E., Cottier-Fox M., O'Shaughnessy J.A. et al. Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation. Blood 1995; 85: 3048-57.
  23. Kohn D.B., Weinberg K.I., Nolta J.A. et al. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat. Med. 1995; 1: 1017-23.
  24. Dexter T.M., Lajtha L.G. Proliferation of haematopoietic stem cells in vitro. Br. J. Haematol. 1974; 28: 525-30.
  25. Sutherland H.J., Lansdorp P.M., Henkelman D.H. et al. Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal cells. PNAS USA 1990; 87: 3584-8.
  26. Hao Q.L., Thiemann F.T., Peterson D. et al. Extended long-term culture reveals a highly quiescent and primitive human hematopoietic progenitor population. Blood 1996; 88: 3306-13.
  27. Harrison D.E., Lerner C.P., Spooncer E. Erythropoietic repopulating ability of stem cells from long-term marrow cultures. Blood 1987; 69: 1021-5.
  28. Szilvassy S.J., Humphries R.K., Lansdorp P.M. et al. Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. PNAS USA 1990; 87: 8736-40.
  29. Billingham R., Brent L., Medawar P.B. Actively acquired tolerance of foreign cells. Nature 1953; 172: 603-06.
  30. Billingham R., Brent L., Medawar P.B. Quantitative studies on tissue transplantation immunity. III. Actively acquired tolerance. Philos. Trans. R. Soc. Lond. В Biol. Sci. 1956; B239: 357-69.
  31. Binns R. Bone marrow and lymphoid cell injection of the pig fetus resulting in transplantation tolerance or immunity, and immunoglobulin production. Nature 1967; 214: 179-80.
  32. Shultz L.D. Hematopoiesis and models of immunodeficiency in the mouse. Semin. Immunol. 1991; 3: 397-408.
  33. Shultz L.D. Immunological mutants of the mouse. Am. J. Anat. 1991; 191: 303-11.
  34. Flake A.W., Harrison M.R., Adzick N.S. et al. Transplantation of fetal hematopoietic cells in utero: The creation of hematopoietic chimeras. Science 1986; 233: 776-8.
  35. Zanjani E.D., Pallavicini M.G., Ascensao J.L. et al. Engraftment and long-term expression of human fetal hematopoietic stem cells in sheep following transplantation in utero. J. Clin. Invest. 1992; 89: 1178-88.
  36. Zanjani E.D., Ascensao J.L., Tavassoli M. Liver-derived fetal hemopoietic stem cells selectively and preferentially home to the fetal bone marrow. Blood 1993; 81: 399-404.
  37. Zanjani E.D., Flake A.W., Rice H.E. et al. Long term repopulation ability of xenogeneic transplanted human fetal liver hematopoietic stem cells tHSC) in sheep. J. Clin. Invest. 1994; 93: 1051-5.
  38. Zanjani E.D., Ascensao J.L., Harrison M.R. et al. Ex vivo incubation with growth factors enhances the engraftment of fetal hemopoietic stem cells transplanted in sheep fetuses. Blood 1992; 79: 3045-9.
  39. Flake A.W., Hendrick M.H., Rice H.E. et al. Enhancement of human hematopoiesis by mast cell growth factor in human-sheep chimeras created by the in utero transplantation of human fetal hematopoietic cells. Exp. Hematol. 1995; 23: 252-7.
  40. Srour E.F., Zanjani E.D., Brandt J.E. et al. Sustained human hematopoiesis in sheep transplanted in utero during early gestation with fractioned adult human bone marrow cells. Blood 1992; 79: 1404-12.
  41. Srour E.F., Zanjani E.D., Cornetta K. et al. Persistence of human multilineage, self renewing lymphohematopoietic stem cells in chimeric sheep. Blood 1993; 82: 3333-42.
  42. Zanjani E.D., Srour E.F., Hoffman R. Retention of long-term repopulating ability of xenogeneic transplanted purified adult human bone marrow hematopoietic stem cells in sheep. J. Lab. Clin. Med. 1995; 126: 24-8.
  43. Cromblehoime T.M., Harrison M.R., Zanjani E.D. In utero transplantation of hematopoietic cells in sheep: The role of Т cells in engraftment and graft-vs-host disease. J. Pediatr. Surg. 1990; 25: 885-92.
  44. Civin C.I., Almeida-Porada G., Lee M.J. et al. Sustained, retransplantable, multi-lineage engraftment of highly purified adult human bone marrow stem cells in vivo. Blood 1996; 88: 4102-9.
  45. Almeida-Porada G., Porada C.D., Tran N. et al. Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation. Blood 2000; 95: 3620-7.
  46. Yin A.H., Miraglia S., Zanjani E.D. et al. AC 133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997; 90: 5002-12.
  47. Bhatia M., Bonnet D., Murdoch B. et al. A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat. Med. 1998; 4: 1038-45.
  48. Zanjani E.D., Almeida-Porada G., Livingston A.G. et al. Human bone marrow CD34-cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. Exp. Hematol. 1998; 26: 353-60.
  49. Verfaillie C.M., Almeida-Porada G., Wissink S. et al. Kinetics of engraftment of CD34H and CD34(+) cells from mobilized blood differs from that of CD34H and CD34(+) cells from bone marrow. Exp. Hematol. 2000; 28: 1071-9.
  50. Sutherland D.R., Yeo E.L., Stewart K. et al. Identification of CD34+ subsets after glycoprotease selection: Engraftment of CD34+/Thyl+/Lin- stem cells in fetal sheep. Exp. Hematol. 1996; 24: 795-806.
  51. Uchida N., Combs J., Chen S. et al. Primitive human hematopoietic cells displaying differential efflux of the Rhodamine 123 dye have distinct biological activities. Blood 1996; 88: 1297-305.
  52. Kawashima I., Zanjani E.D., Almeida-Porada G. et al. CD34+ human marrow cells that express low levels of Kit protein are enriched for long-term marrow engrafting cells. Blood 1996; 87: 4136-42.
  53. Uribe L., Weinberg K.I. X-linked SCID and other defects of cytokine pathways. Semin. Hematol. 1998; 35: 299-309.
  54. Tsai E.J., Malech H.L., Kirby M.R. et al. Retroviral transduction of IL2RG into CD34(+) cells from X-linked severe combined immunodeficiency patients permits human T-and B-cell development in sheep chimeras. Blood 2002; 100: 72-9.
  55. Cavazzana-Calvo M., Hacein-Bey S., de Saint Basile G. et al. Gene therapy of human severe combined immunodeficiency tSCID)-Xl disease. Science 2000; 288(5466): 669-72.
  56. Hacein-Bey-Abina S., Le Deist F., Carlier F. et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N. Engl J. Med. 2002; 346(16): 1185-93.
  57. Hacein-Bey-Abina S., von Kalle С., Schmidt M. et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 2003; 348: 255-6.
  58. Barbosa M.D., Nguyen Q.A., Tchernev V.T. et al. Identification of the homologous beige and Chediak-Higashi syndrome genes. Nature 1996; 382: 262-5.
  59. Perou C.M., Moore K., Nagle D.L. et al. Identification of the murine beige gene by YAC complementation and positional cloning. Nat. Genet. 1996; 13: 303-8.
  60. Flanagan S. «Nude,» a new hairless gene with pleiotropic effects in the mouse. Genet. Res. 1966; 8: 295-309.
  61. Nehls M., Pfeifer D., Schorpp M. et al. New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 1994; 372: 103-7.
  62. Segre J.A., Nemhauser J.L., Taylor B.A. et al. Positional cloning of the nude locus: Genetic, physical, and transcription maps of the region and mutations in the mouse and rat. Genomics 1995; 28: 549-59.
  63. Scher I. The CBA/N mouse strain: An experimental model illustrating the influence of the X-chromosome on immunity. Adv. Lmmunol. 1982; 33: 1-71.
  64. Thomas J.D., Sideras P., Smith C.I. et al. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science 1993; 261: 355-8.
  65. Rawlings D.J., Saffran D.C., Tsukada S. et al. Mutation of the unique region of Bruton's tyrosine kinase in immunodeflcient XID mice. Science 1993; 261: 358-61.
  66. Kamel-Reid S., Dick J.E. Engraftment of immune-deficient mice with human hematopoietic stem cells. Science 1988; 242: 1706-9.
  67. Nolta J.A., Hanley M.B., Kohn D.B. Sustained human hematopoiesis in immunodeflcient mice by cotransplantation of marrow stroma expressing human interleukin-3: Analysis of gene transduction of long-lived progenitors. Blood 1994; 83: 3041-51.
  68. Arakawa-Hoyt J., Dao M.A., Thiemann F. et al. The number and generative capacity of human В lymphocyte progenitors, measured in vitro and in vivo, is higher in umbilical cord blood than in adult or pediatric bone marrow. Bone Marrow Transplant. 1999; 24: 1167-76.
  69. Nolta J.A., Dao M., Wells S. et al. Transduction of pluripotent human hematopoietic stem cells demonstrated by clonal analysis after engraftment in immune deficient mice. PNAS USA 1996; 93: 2414-9.
  70. Schmidt M., Hoffmann G., Wissler M. et al. Detection and direct genomic sequencing of multiple rare unknown flanking DNA in highly complex samples. Hum. Gene Ther. 2001; 12: 743-9.
  71. Blunt T., Finnic N.J., Taccioli G.E. et al. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 1995; 80: 813-23.
  72. Lapidot T., Pflumio F., Doedens M. et al. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in sad mice. Science 1992; 255: 1137-41.
  73. Shultz L., Schweitzer P., Christianson S. et al. Multiple defects in innate and adaptive immunological function in NOD/LtSz-scid mice. J. Immunol. 1995; 154: 180-91.
  74. Gan O.I., Dorrell C., Pereira D.S. et al. Characterization and retroviral transduction of an early human lymphomyeloid precursor assayed in nonswitched long-term culture on murine stroma. Exp. Hematol. 1999; 27: 1097-106.
  75. Larochelle A., Vormoor J., Lapidot T. et al. Engraftment of immune-deficient mice with primitive hematopoietic cells from beta-thalassemia and sickle cell anemia patients: Implications for evaluating human gene therapy protocols. Hum. Mol. Genet. 1995; 4: 163-72.
  76. Lowry P.A., Shultz L.D., Greiner D.L. et al. Improved engraftment of human cord blood stem cells in NOD/LtSz-scid/scid mice after irradiation or multiple-day injections into unirradiated recipients. Biol. Blood Marrow Transplant. I996; 2: 15-23.
  77. Pflumio F., Izac B., Katz A. et al. Phenotype and function of human hematopoietic cells engrafting immune-deficient CB17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells. Blood 1996; 88: 3731-40.
  78. Prochazka M., Gaskins H.R., Shultz L.D. et al. The nonobese diabetic scid mouse: Model for spontaneous thymomagenesis associated with immunodeficiency. PNAS USA 1992; 89: 3290-4.
  79. Kollet O., Peled A., Byk T. et al. Beta2 microglobulin-deficient [B2mtnull)] NOD/ SCID mice are excellent recipients for studying human stem cell function. Blood 2000; 95: 3102-5.
  80. Dick J.E., Bhatia M., Can O. et al. Assay of human stem cells by repopulation of NOD/SCID mice. Stem Cells 1997; 15tSup.1): 199-203.
  81. Hao Q.L., Shah A.J., Thiemann F.T. et al. A functional comparison of CD34+ CD38- cells in cord blood and bone marrow. Blood 1995; 86: 3745-53.
  82. Guenechea G., Gan 0., Inamitsu T. et al. Transduction of human CD34+ CD38- bone marrow and cord blood-derived SCID-repopulating cells with third-generation lentiviral vectors. Mol. Ther. 2000; 1(6): 566-73.
  83. Dao M.A., Shah A.J., Crooks G.M. et al. Engraftment and retroviral marking of CD34+ and CD34+CD38- human hematopoietic progenitors assessed in immune-deficient mice. Blood 1998; 91: 1243-55.
  84. Guenechea G., Gan 0., Dorrell C. et al. Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat. Immunol. 2001; 2: 75-82.
  85. Dao M.A., Arevalo J., Nolta J.A. Reversibility of CD34 expression on human hematopoietic stem cells that retain the capacity for secondary reconstitution. Blood 2003; 101: 112-8.
  86. Josephson N.C., Vassilopoulos G., Trobridge G.D. et al. Transduction of human NOD/SCID-repopulating cells with both lymphoid and myeloid potential by foamy virus vectors. PNAS USA 2002; 99: 8295-300.
  87. Kamel-Reid S., Letarte M., Sirard C. et al. A model of human acute lymphoblastic leukemia in immune-deficient SCID mice. Science 1989; 246: 1597-600.
  88. Kamel-Reid S., Letarte M., Doedens M., et al. Bone marrow from children in relapse with pre-B acute lymphoblastic leukemia proliferates and disseminates rapidly in scid mice. Blood 1991; 78: 2973-81.
  89. Wang J.C., Lapidot T., Cashman J.D. et al. High level engraftment of NOD/ SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase. Blood 1998; 91: 2406-14.
  90. Bonnet D., Dick J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 1997; 3: 730-7.
  91. Dick J.E. Normal and leukemic human stem cells assayed in SCID mice. Semin. Immunol. l996; 8: 197-206.
  92. Roesler J., Brenner S., Bukovsky A.A. et al. Third-generation, self-inactivating gp91tphox) lentivector corrects the oxidase defect in NOD/SCID mouse-repopulating peripheral blood-mobilized CD34+ cells from patients with X-linked chronic granulomatous disease. Blood 2002; 100: 4381-90.
  93. McCune J.M., Namikawa R., Kaneshima H. et al. The SCID-hu mouse: Murine model for the analysis of human hematolymphoid differentiation and function. Science 1988; 241: 1632-9.
  94. Namikawa R., Weilbaecher K.N., Kaneshima H. et al. Longterm human hemato-poiesis in the SCID-hu mouse. J. Exp. Med. 1990; 172: 1055-63.
  95. Krowka Х., Sarin S., Namikawa R. et al. The human Т cells of the SCID-hu mouse are phenotypically normal and functionally competent. J. Immunol. 1991; 145: 3751-6.
  96. Pflumio F., Lapidot T., Murdoch В. et al. Engraftment of human lymphoid cells into newborn SCID mice leads to graft-versus-host disease. Int. Immunol. 1993; 5: 1509-22.
  97. Vandekerckhove B.A., Namikawa R., Bacchetta R. et al. Human hematopoietic cells and thymic epithelial cells induce tolerance via different mechanisms in the SCID-hu mice. J. Exp. Med. 1992; 175: 1033-40.
  98. Kyoizumi S., Baum С., Kaneshima H. et al. Implantation and maintenance of functional human bone marrow into SCID-hu mice. Blood 1992: 79: 1704-11.
  99. Fraser С., Kaneshima H., Hansteen G. et al. Human allogeneic stem cell maintenance and differentiation in a long-term multilineage SCID-hu graft. Blood 1995; 86: 1680-93.
  100. Kollmann T., Kim A., Zhuang X. et al. Reconstitution of SCID mice with human lymphoid and myeloid cells after transplantation with human fetal bone marrow without the requirement for exogenous human cytokines. PNAS USA 1994; 91: 8032-6.
  101. Vormoor J., Lapidot T., Pflumio F. et al. Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immunodeficient mice. Blood 1994; 83: 2489-97.
  102. Lansdorp P.M., Dragowska W., Mayani H. Ontogeny-related changes in proliferative potential of human hematopoietic cells. J. Exp. Med. 1993; 178: 787-91.
  103. Chen B.P., Galy A., Kyoizumi S. et al. Engraftment of human hematopoietic precursor cells with secondary transfer potential in SCID-hu mice. Blood 1994; 84: 2497-505.
  104. Murray L., Chen В., Galy A. et al. Enrichment of human hematopoietic stem cell activity in the CD34+Thy-l+Lin- subpopulation from mobilized peripheral blood. Blood 1995; 85: 368-78.

Copyright (c) 2014 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 85657 от 21.07.2023 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies