Myogenic satellite cells are a cambial reserve of muscle tissue

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The review deals with cell sources of histogenesis and regeneration of striated skeletal muscle tissue. Heterogeneity of cambial cells of this tissue as well as an important role of their microenvironment to provide their activation, proliferation, differentiation and specialization is displayed. Issues of myogenic satellite cells cytogenesis within the embryonic and postnatal development are discussed. The data on molecular markers of myosatellitocytes and some other tissue components are provided. Issues of non-myogenic sources of skeletal muscle tissue histogenesis are discussed. The significance of studying a cambial cell reserve for the development of effective treatment modalities of muscular dystrophy is emphasized. An experimental material should be analyzed with consideration of the fundamental theoretical concepts on the regularities of histogenesis, cell differons, the theory of stem cell.

About the authors

I. A Odintsova

S.M. Kirov Military Medical Academy, Saint-Petersburg, Russia

M. N Chepurnenko

S.M. Kirov Military Medical Academy, Saint-Petersburg, Russia

A. S Komarova

S.M. Kirov Military Medical Academy, Saint-Petersburg, Russia


  1. Данилов Р.К., Мурзабаев Х.Х., Одинцова И.А. и др. Миосателлитоциты как источник регенерации скелетной мышечной ткани. Успехи современной биологии 2002; 122(3): 273-81.
  2. Одинцова И.А., Слуцкая Д.Р., Чепурненко М.Н. Дифферен-цировка мышечных волокон в ходе формирования нервно-мышечных взаимодействий. Морфология 2008; 133(2): 98-9.
  3. Shi X., Garry D. Muscle stem cells in development, regeneration, and disease. Genes Dev. 2006; 20(13): 1692-708.
  4. Le Grand F., Rudnicki M. Skeletal muscle satellite cells and adult myogenesis. Curr. Opin. Cell Biol. 2007; 19(6): 628-33.
  5. Yablonka-Reuveni Z. The skeletal muscle satellite cell: still young and fascinating at 50. J. Histochem. Cytochem. 2011; 59(12): 1041-59.
  6. Hunger C., Odemis V., Engele J. Expression and function of the SDF-1 chemokine receptors CXCR4 and CXCR7 during mouse limb muscle development and regeneration. Exp. Cell Res. 2012; 318(17): 2178-90.
  7. Михайлов В.М., Евтифеева Е.В., Сериков В.Б. и др. Участие стволовых клеток костного мозга в дифференцировке поперечнополосатых мышц мышей mdx. Цитология 2006; 48(5): 410-8.
  8. Сукач А.Н. Перспективы использования генной и клеточной терапий для лечения мышечных дистрофий. Клеточная трансплантология и тканевая инженерия 2006; 1(2): 44-50.
  9. Соколова А.В., Зенин В.В., Михайлов В.М. Структура ней-ромышечных соединений и дифференцировка поперечнополосатых мышечных волокон у мышей mdx после клеточной терапии стволовыми клетками костного мозга. Цитология 2010; 52(5): 399.
  10. Старостина И.Г., Соловьева В.В., Юрьева К.С. и др. Дисферлинопатии: возможности диагностики, моделирования и генно-клеточной терапии. Клеточная трансплантология и тканевая инженерия 2013; 8(3): 61-71.
  11. Pannerec A., Marazzi G., Sassoon D. Stem cells in the hood: the skeletal muscle niche. Trends Mol. Med. 2012; 18(10): 599-606.
  12. Yusuf F., Brand-Saberi B. Myogenesis and muscle regeneration. Histochem. Cell Biol. 2012; 138(2): 187-99.
  13. Fukada S., Ma Y., Ohtani T. et al. Isolation, characterization, and molecular regulation of muscle stem cells. Front. Physiol. 2013; 12(4): 317.
  14. Данилов Р.К. Гистогенетические основы нервно-мышечных взаимоотношений. СПб: ВМедА. 1996; 132 с.
  15. Данилов Р.К. Раневой процесс: гистогенетические основы. СПб.: ВМедА. 2008; 380 с.
  16. Данилов Р.К., Одинцова И.А. Мышечная система. В: Руководство по гистологии. Т.1. СПб.: СпецЛит. 2011; 425-41.
  17. Solomon A., Bouloux P. Modifying muscle mass - the endocrine perspective. J. Endocrinol. 2006; 191(2): 349-60.
  18. Zammit P., Partridge T., Yablonka-Reuveni Z. The skeletal muscle satellite cell: the stem cell that came in from the cold. J. Histochem. Cytochem. 2006; 54(11): 1177-91.
  19. Goodall M., Ward C., Pratt S. et al. Structural and functional evaluation of branched myofibers lacking intermediate filaments. Am. J. Physiol. Cell Physiol. 2012; 303(2):C224-32.
  20. Kobayashi K., Izawa T., Kuwamura M. et al. Dysferlin and animal models for dysferlinopathy. J. Toxicol. Pathol. 2012; 25(2): 135-47.
  21. Mangner N., Adams V., Sandri M. et al. Muscle function and running activity in mouse models of hereditary muscle dystrophy: impact of double knockout for dystrophin and the transcription factor MyoD. Muscle Nerve 2012; 45(4): 544-51.
  22. Данилов Р.К., Клишов А.А. Миосателлитоциты и проблема камбиальности скелетной мышечной ткани. Успехи современной биологии 1982; 93(3): 409-20.
  23. Usas A., Huard J. Muscle-derived stem cells for tissue engineering and regenerative therapy. Biomaterials 2007; 28(36): 5401-6.
  24. Cohen T., Cohen J., Partridge T. Myogenesis in dysferlin-deficient myoblasts is inhibited by an intrinsic inflammatory response. Neuromuscul. Disord. 2012; 22(7): 648-58.
  25. Juhas M., Bursac N. Engineering skeletal muscle repair. Curr. Opin. Biotechnol. 2013; 24(5): 880-6.
  26. Chang N., Rudnicki M. Satellite cells: the architects of skeletal muscle. Curr. Top. Dev. Biol. 2014; 107: 161-81.
  27. Kuang S., Gillespie M., Rudnicki M. Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2008; 2(1): 22-31.
  28. Danoviz M., Yablonka-Reuveni Z. Skeletal muscle satellite cells: background and methods for isolation and analysis in a primary culture system. Methods Mol. Biol. 2012; 798: 21-52.
  29. Yin H., Price F., Rudnicki M. Satellite cells and the muscle stem cell niche. Physiol. Rev. 2013; 93(1): 23-67.
  30. Scharner J., Zammit P. The muscle satellite cell at 50: the formative years. Skelet. Muscle 2011; 1(1): 28.
  31. Mauro A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 1961; 9: 493-5.
  32. Katz B. The termination of the afferent nerve fiber in the muscle spindle of the frog. Trans. R. Soc. London. B. Biol. Sci. 1961; 343: 221-32.
  33. Figeac N., Daczewska M., Marcelle C. et al. Muscle stem cells and model systems for their investigation. Dev. Dyn. 2007; 236(12): 3332-42.
  34. Sacco A., Doyonnas R., Kraft P. et al. Self-renewal and expansion of single transplanted muscle stem cells. Nature 2008; 456(7221): 502-6.
  35. Murphy M., Lawson J., Mathew S. et al. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 2011; 138(17): 3625-37.
  36. Zhang S., Bruton J., Katz A. et al. Limited oxygen diffusion accelerates fatigue development in mouse skeletal muscle. J. Physiol. 2006; 572 (Pt 2): 551-9.
  37. Buckingham M., Relaix F. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu. Rev. Cell. Dev. Biol. 2007; 23: 645-73.
  38. Low M., Sandoval D., Morales B. et al. Up-regulation of the vitamin C transporter SVCT2 upon differentiation and depolarization of myotubes. FEbS Lett. 2011; 585(2): 390-396.
  39. Mathew S., Hansen J., Merrell A. et al. Connective tissue fibroblasts and Tcf4 regulate myogenesis. Development 2011; 138(2): 371-84.
  40. Otis J., Niccoli S., Hawdon N. et al. Pro-inflammatory mediation of myoblast proliferation. PLoS One 2014; 9(3): e92363.
  41. Gnocchi V., White R., Ono Y. et al. Further characterisation of the molecular signature of quiescent and activated mouse muscle satellite cells. PLoS One 2009; 4(4): e5205.
  42. Kawiak J., Brzoska E., Grabowska I. et al. Contribution of stem cells to skeletal muscle regeneration. Folia Histochem. Cytobiol. 2006; 44(2): 75-9.
  43. Carlson M., Suetta C., Conboy M. et al. Molecular aging and rejuvenation of human muscle stem cells. EMBO Mol. Med. 2009; 1(8-9): 381-91.
  44. Conboy I., Conboy M., Smythe G. et al. Notch-mediated restoration of regenerative potential to aged muscle. Science 2003; 302(5650): 1575-7.
  45. Tedesco F., Dellavalle A., Diaz-Manera J. et al. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J. Clin. Invest. 2010; 120(1): 11-9.
  46. Collins C. Satellite cell self-renewal. Curr. Opin. Pharmacol. 2006; 6(3): 301-6.
  47. Бозо И.Я. Молекулярные механизмы «старения» миосателлитоцитов. Клеточная трансплантология и тканевая инженерия 2010; 5(1): 18-9.
  48. Huard J., Cao B., Qu-Petersen Z. Muscle-derived stem cells: potential for muscle regeneration. Birth. Defects Res. C. Embryo Today 2003; 69(3): 230-7.
  49. Aziz A., Sebastian S., Dilworth F. The origin and fate of muscle satellite cells. Stem Cell Rev. 2012; 8(2): 609-22.
  50. Gros J., Manceau M., Thome V. et al. A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 2005; 435(7044): 954-8.
  51. Velleman S. Muscle development in the embryo and hatchling. Poult Sci. 2007; 86(5): 1050-4.
  52. Nogradi A., Pajer K., Marton G. The role of embryonic motoneuron transplants to restore the lost motor function of the injured spinal cord. Ann. Anat. 2011; 193(4): 362-70.
  53. Collins C., Zammit P., Ruiz A. et al. A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells 2007; 25(4): 885-94.
  54. Jang Y., Sinha M., Cerletti M. et al. Skeletal muscle stem cells: effects of aging and metabolism on muscle regenerative function. Gold Spring Harb. Symp. Quant. Biol. 2011; 76: 101-11.
  55. Boldrin L., Morgan J. Human satellite cells: identification on human musclefibres. PLoSCurr. 2012; 3: RRN1294.
  56. Chen Y., Zajac J., MacLean H. Androgen regulation of satellite cell function. J. Endocrinol. 2005; 186(1): 21-31.
  57. Anderson J. The satellite cell as a companion in skeletal muscle plasticity: currency, conveyance, clue, connector and colander. J. Exp. Biol. 2006; 209 (Pt 12): 2276-92.
  58. Kuang S., Kuroda K., Le Grand F. et al. Asymmetric selfrenewal and commitment of satellite stem cells in muscle. Cell 2007; 129(5): 999-1010.
  59. Yamanouchi K., Hosoyama T., Murakami Y. et al. Myogenic and adipogenic properties of goat skeletal muscle stem cells. J. Reprod. Dev. 2007; 53(1): 51-8.
  60. Бозо И.Я. Идентификация истинно стволовых клеток скелетной мышечной ткани в популяции миосателлитоцитов. Клеточная трансплантология и тканевая инженерия 2009; 4(1): 27-9.
  61. Коржевский Д.Э., Петрова Е.С., Кирик О.В. и др. Нейральные маркеры, используемые при изучении дифференцировки стволовых клеток. Клеточная трансплантология и тканевая инженерия 2010; 5(3): 57-63.
  62. Yablonka-Reuveni Z., Day K., Vine A. et al. Defining the transcriptional signature of skeletal muscle stem cells. J. Anim. Sci. 2008; 86(14 Suppl): E207-16.
  63. Zammit P. All muscle satellite cells are equal, but are some more equal than others? J. Cell Sci. 2008; 121tPt 18): 2975-82.
  64. Bareja A., Billin A. Satellite cell therapy - from mice to men. Skelet. Muscle 2013; 3(1): 2.
  65. Kao G., Lamb E., Kao R. Skeletal muscle stem cells. Methods Mol. Biol. 2013; 1036: 19-32.
  66. Bareja A., Holt J., Luo G. et al. Human and mouse skeletal muscle stem cells: convergent and divergent mechanisms of myogenesis. PLoS One 2014; 9t2): e90398.
  67. Bonnet A., Dai F., Brand-Saberi B. et al. Vestigial-like 2 acts downstream of MyoD activation and is associated with skeletal muscle differentiation in chick myogenesis. Mech. Dev. 2010; 127(1-2): 120-36.
  68. Carvajal J., Rigby P. Regulation of gene expression in vertebrate skeletal muscle. Exp. Cell. Res. 2010; 316(18): 3014-8.
  69. Tanaka K., Hall J., Troy A. et al. Syndecan-4-expressing muscle progenitor cells in the SP engraft as satellite cells during muscle regeneration. Cell Stem Cell 2009; 4(3): 217-25.
  70. Одинцова И.А. Проблема камбиальности скелетной мышечной ткани в регенерационном гистогенезе. В кн.: Вопросы морфологии XXI века. Вып. 2. СПб.: ДЕАН. 2010; 147-52.
  71. Peault B., Rudnicki M., Torrente Y. et al. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol. Ther. 2007; 15(5): 867-77.
  72. Клишов А.А. Гистогенез и регенерация тканей. Л.: Медицина. 1984; 232 с.
  73. Relaix F., Zammit P. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 2012; 139(16): 2845-56.
  74. Mokalled M., Johnson A., Creemers E. et al. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration. Genes Dev. 2012; 26(2): 190-202.
  75. Philippou A., Halapas A., Maridaki M. et al. Type I insulin-like growth factor receptor signaling in skeletal muscle regeneration and hypertrophy. J. Musculoskelet. Neuronal Interact. 2007; 7(3): 208
  76. Sambasivan R., Yao R., Kissenpfennig A. et al. Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 2011; 138(17): 3647-56.
  77. Garikipati D., Rodgers B. Myostatin inhibits myosatellite cell proliferation and consequently activates differentiation: evidence for endocrine-regulated transcript processing. J. Endocrinol. 2012; 215(1): 177-87.
  78. Abou-Khalil R., Le Grand F., Chazaud B. Human and murine skeletal muscle reserve cells. Methods Mol. Biol. 2013; 1035: 16577.
  79. Rudnicki M., Le Grand F., McKinnell I. et al. The molecular regulation of muscle stem cell function. Cold. Spring. Harb. Symp. Quant. Biol. 2008; 73: 323-31.
  80. Shinin V., Gayraud-Morel B., Gomes D. et al. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat. Cell. Biol. 2006; 8(7): 677-87.
  81. Archacka K., Kowalski K., Brzoska E. Are satellite cells stem cells? Postepy Biochem. 2013; 59(2): 205-18.
  82. Kottlors M., Kirschner J. Elevated satellite cell number in Duchenne muscular dystrophy. Cell Tissue Res. 2010; 340(3): 541-8.
  83. Asakura A., Seale P., Girgis-Gabardo A. et al. Myogenic specification of side population cells in skeletal muscle. J. Cell Biol. 2002; 159(1): 123-34.
  84. Torrente Y., Tremblay J., Pisati F. et al. Intraarterial injection of muscle-derived CD34( + )Sca-1( + ) stem cells restores dystrophin in mdx mice. J. Cell Biol. 2001; 152(2): 335-48.
  85. Pesce M., Orlandi A., Iachininoto M. et al. Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ishemic limb tissues. Circ. Res. 2003; 93: e51-e62.
  86. Берсенев А.В. Слияние клеток костного мозга с мышечными клетками терапевтически не эффективно. Клеточная трансплантология и тканевая инженерия 2005; 1: 10-11.
  87. De Angelis L., Berghella L., Coletta M. et al. Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J. Cell Biol. 1999; 147(4): 869-78.
  88. Dellavalle A., Sampaolesi M., Tonlorenzi R. et al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat. Cell Biol. 2007; 9(3): 255-67.
  89. Cossu G., Sampaolesi M. New therapies for Duchenne muscular dystrophy: challenges, prospects and clinical trials. Trends Mol. Med. 2007; 13(12): 520-6.
  90. Lepper C., Conway S., Fan C. Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 2009; 460(7255): 627-31.
  91. Dellavalle A., Maroli G., Covarello D. et al. Pericytes resident in postnatal skeletal muscle differentiate into muscle fibers and generate satellite cells. Development 2011; 138(21): 4609-19.
  92. Boldrin L., Zammit P., Muntoni F. et al. Mature adult dystrophic mouse muscle environment does not impede efficient engrafted satellite cell regeneration and self-renewal. Stem Cells 2009; 27(10): 2478-87.
  93. Morrison J., Borg P., Simon A. Plasticity and recovery of skeletal muscle satellite cells during limb regeneration. FASEB J. 2010; 24(3): 750-6.
  94. Yada E., Yamanouchi K., Nishihara M. Adipogenic potential of satellite cells from distinct skeletal muscle origins in the rat. J. Vet. Med. Sci. 2006; 68(5): 479-86.
  95. Uezumi A., Ojima K., Fukada S. et al. Functional heterogeneity of side population cells in skeletal muscle. Biochem. Biophys. Res. Commun. 2006; 341(3): 864-73.
  96. Shefer G., Wleklinski-Lee M., Yablonka-Reuveni Z. Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J. Cell Sci. 2004; 117(Pt 22): 5393-404.

Copyright (c) 2014 Eco-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 85657 от 21.07.2023 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies