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АННОТАЦИЯ
Обоснование. Адаптация нейронных сетей мозга к переменным условиям окружающей среды — ключевой аспект 
эффективного исполнения когнитивных функций. Сетевой подход в нейронауке, фокусирующийся на анализе струк-
турных и функциональных характеристик сетей, которые связаны с когнитивными функциями, является весьма мно-
гообещающим направлением для понимания психофизиологических механизмов, лежащих в основе адаптивной 
динамики когнитивных процессов. 
Цель исследования — изучить, как топологические особенности функциональных коннектомов мозга человека 
связаны с осуществлением различных когнитивных процессов. Основное внимание было уделено определению ди-
намических изменений в мозговых сетях во время выполнения задач на рабочую память с целью выявления сете-
вых характеристик, присущих сетям при исполнении этой когнитивной функции. 
Методы. На основе электроэнцефалографических данных подробно рассмотрены топологические характеристики 
функциональных мозговых сетей в состоянии покоя и при когнитивной нагрузке, обеспечиваемой выполнением 
теста Стернберга на рабочую память (Sternberg Item Recognition Paradigm). Записи ЭЭГ 67 здоровых взрослых были 
обработаны для оценки функциональной связности с помощью метода когерентности. Мы предполагаем, что то-
пологические свойства функциональных сетей в человеческом мозге различаются между когнитивной нагрузкой 
и состоянием покоя с более высокой интеграцией в сетях во время когнитивной нагрузки. 
Результаты. Исследование подтверждает, что топологические особенности функциональных коннектомов зависят 
от текущего состояния когнитивной обработки и изменяются в ответ на изменения когнитивной нагрузки, вызван-
ной заданием. Анализ также продемонстрировал, что функциональные коннектомы, зафиксированные при выпол-
нении задач на рабочую память, характеризуются более быстрым появлением генераторов групп гомологии. Это 
подтверждает идею взаимосвязи между начальными этапами выполнения задач на рабочую память и увеличением 
скорости сетевой интеграции, при этом решающую роль играют соединительные хабы (connector hubs). 
Заключение. Различные уровни когнитивной нагрузки, в частности при задачах на рабочую память, связаны с раз-
ными топологическими свойствами функциональных сетей мозга, что подчёркивает важность сетевой динамики 
в когнитивной обработке.

Ключевые слова: когнитивная нейронаука; функциональная нейровизуализация; картирование биоэлектрической 
активности мозга; картирование коннектома; рабочая память.
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ABSTRACT
BACKGROUND: Neural networks of the brain continually adapt to changing environmental demands. The network approach in 
neuroscience, which focuses on the analysis of structural and functional network characteristics related to cognitive functions, 
is a highly promising avenue for understanding the psychophysiological mechanisms underlying the adaptive dynamics of 
cognitive processes. 
AIM: We aimed to explore how the topological features of functional connectomes in the human brain are linked to different 
cognitive demands. The focus was on understanding the dynamic changes in brain networks during working memory tasks to 
identify network characteristics inherent to working memory. 
METHODS: We examined the topological characteristics of functional brain networks in the resting state and cognitive 
load provided by the execution of the Sternberg Item Recognition Paradigm based on electroencephalographic data. 
Electroencephalogram traces from 67 healthy adults were processed to estimate functional connectivity using the coherence 
method. We propose that the topological properties of functional networks in the human brain are distinct between cognitive 
load and resting state, with higher integration in the networks during cognitive load. 
RESULTS: The topological features of functional connectomes depend on the current state of cognitive processing and change 
with task-induced cognitive load variation. Moreover, functional connectivity during working memory tasks showed a faster 
emergence of homology group generators, supporting the idea of a relationship between the initial stages of working memory 
execution and an increase in faster network integration, with connector hubs playing a crucial role. 
CONCLUSION: Collected evidence suggest that cognitive states, particularly those related to working memory, are associated 
with distinct topological properties of functional brain networks, highlighting the importance of network dynamics in cognitive 
processing.

Keywords: cognitive neuroscience; functional neuroimaging; brain electrical activity mapping; connectome mapping; 
working memory.
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INTRODUCTION
Network neuroscience, an approach aimed at analyzing 

the characteristics of structural and functional networks 
associated with cognitive functions, is one of the most 
promising ways of understanding the psychophysiological 
mechanisms of cognition. The tremendous complexity of brain 
neuronal structures, abundant with interconnections, renders 
the relation of cognitive functions to the activity of separate 
brain regions inefficient. It appears that interactions between 
the brain loci are a better way of understanding the brain 
mechanisms of cognition. Recently, a network approach that 
depicts the brain as a network of interconnected regions has 
become a popular method of brain activity analysis. 

The widely used measure in functional network 
studies is the level of global segregation and integration 
in the network. Segregated networks are characterized 
by a more distinguished structure of processing modules, 
whereas the nodes of integrated networks are much more 
interconnected. Functional segregation in the network is 
characterized by higher modularity and clearly distinguishable 
clusters of nodes in which the number of intracluster 
connections significantly exceeds the number of intercluster 
connections. The integrated network is characterized by low 
modularity and a higher level of interconnection between all 
network nodes (Fig. 1). The new computational methodology 
has shown that the global topological properties of functional 
brain networks have some unique features, such as small-
worldness, which implies a low path length and high 
clustering, and provides an optimal ratio of the efficiency 
of information processing and the costs of its transmission 

for brain networks [1]. In addition, convincing evidence 
shows that brain neural networks are complementary 
to global small-world architecture characteristics of 
topological organization such as high clustering and high 
global efficiency [2] and highly modular community structure 
[3], which indicates a high number of nodes with multiple 
connections — network hubs [4]. 

Increasing the level of integration within brain functional 
networks is often associated with cognitive activity [5]. 
The level of integration in the network can directly predict 
performance in cognitive tasks, including those for working 
memory (WM), such as the N-back task. 

By applying the methods of network neuroscience, 
large amounts of data on the basic network architecture 
of the human brain, particularly the cerebral cortex, were 
collected. Neuroimaging studies have suggested that brain 
activity is topologically organized by functional networks, 
which are persistent in the cognitive load and resting states. 
These networks are commonly referred to as intrinsic 
connectivity networks (ICNs) [6], which denote functional 
brain networks detected regardless of the current cognitive 
load and separate them from resting state networks. 
Evidence shows that the topology of these functional 
networks is close to the anatomical neural topology of the 
corresponding brain regions [7–9], and these networks 
are associated with certain cognitive functions (e.g., 
networks of visual perception, long-term memory, cognitive 
control, and attention [10]), supporting global information 
processing and other aspects of cognition. Key features 
of ICN organization in the human brain include the seven 
most distinguished networks according to the study by Yeo 

Fig. 1. Brain networks demonstrate a “small-world topology”, providing a balance between a regular network (leftmost), which promotes 
local efficiency in exchange for low costs, and a random network (rightmost), which delivers global efficiency at high cost. As segregation 
increases (right-to-left), the network is divided into modules, and its nodes are closely interconnected and poorly connected to the nodes 
in other modules. As integration increases (left-to-right), the number of connections between nodes increases, and individual modules 
merge into a single undifferentiated network. Rich clubs (yellow), formed by hubs of high centrality, provide global information pathways 
in the network. Figure adapted from [6].
Рис. 1. Сети мозга демонстрируют топологию «тесного мира» (“small-world topology”), обеспечивающую баланс между регулярной 
сетью (слева), которая способствует локальной эффективности в обмен на низкие затраты, и случайной сетью (справа), которая 
обеспечивает глобальную эффективность при высоких затратах. По мере увеличения сегрегации (справа налево) сеть делится 
на модули, узлы внутри которых тесно взаимосвязаны, но слабо связаны с узлами в других модулях. По мере увеличения ин-
теграции (слева направо) количество соединений между узлами увеличивается, и отдельные модули объединяются в единую 
недифференцированную сеть. «Богатый клуб» (“Rich club”; показан жёлтым цветом), созданный узлами высокой центральности, 
обеспечивает поддержание эффективных глобальных информационных потоков в сети. Рисунок адаптирован из [6].
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et al., where the more stable networks were distinguished 
in functional magnetic resonance imaging data [11]. These 
networks are roughly specified as visual, somatomotor, 
dorsal attention, ventral attention, limbic, frontoparietal, and 
default-mode networks. Although some of these networks 
are suggested to aggregate multiple topologically and task-
specific subnetworks, research reveals that these networks 
can be attributed to specific functions. Nevertheless, these 
findings support the idea of topologically localized network 
organization of brain neural activity.

According to modern conceptions of brain network 
organization, the key elements of global brain networks 
are the highly connected zones in the brain, which are 
responsible for the transfer of information between 
specialized ICNs. Such zones, or hubs, can be either local 
(provincial hubs), connecting nearby nodes to a functional 
local subnetwork, or global (connector hubs), through 
which local subnets communicate with each other. Studies 
have shown that global hubs form the “rich club” [12], 
which includes approximately 70% of the shortest paths in 
the neural networks of the brain, and is the most important 
element ensuring the effective operation of the global 
network [13]. The connection of the features of rich club 
networks with cognitive functions lies in the fact that local 
hubs, having many strong connections within their subnets, 
ensure the transition of the network to easily accessible 
states [14], in which internalized knowledge and experience 
are available for processing by various means.

Working memory is a crucial cognitive function that 
makes a significant contribution to an individual’s cognition. 
Encoding, storage, and retrieval of information from memory 
are essential for various cognitive functions, including 
speech, reasoning, perception, and motor activity [15]. 

The prefrontal cortex, particularly its dorsolateral part, 
is considered to play a major role in the execution of WM. 
The dorsolateral prefrontal cortex appears to be involved 
in information storage, particularly regarding spatial 
positioning, whereas various parts of the ventral and 
lateral prefrontal cortices participate in storing nonspatial 
information (e.g., objects, faces, and words). On the contrary, 
each of these areas may have different functions, whereas 
the dorsolateral prefrontal cortex is involved in manipulating 
information, and the ventrolateral cortex is suggested to be 
involved in its retention [16].

According to recent studies, during the WM task, brain 
networks have some specific properties, particularly an 
increase in the integration between the frontoparietal and 
frontotemporal lobes, and an increase in reconfiguration 
in the frontal regions is positively associated with 
the performance of memorization [17]. The latest data 
suggest that the execution of WM tasks leads to an increase 
in segregation in functional brain networks compared with 
the networks in the resting state. The significance of the role 
of frontoparietal functional networks in WM performance is 
validated by the considerable accuracy of prediction models 

based on the topological characteristics of functional 
connectivity in these regions [18, 19]. In addition, Finc et al. 
showed that training affects network segregation, induced 
by WM tasks: after training, participants tend to have more 
modularity in functional networks, whereas the performance 
of the participants in WM tests also increases [20]. After 
the training, the integration between task-positive systems 
(frontoparietal, salience, dorsal attention, and cingulo-
opercular) increased, whereas the integration of the listed 
ICNs with the default-mode network decreased.

Considering the abovementioned facts, we hypothesized 
that the topological characteristics of the functional networks 
of the human brain differ in WM tasks and resting state. 
Furthermore, we assumed functional connectivity in the WM 
load to demonstrate a more integrated organization with 
a distinct rich club of highly connected hubs. 

Aim — to investigate the relationship between 
the topological features of functional connectomes in 
the human brain and cognitive processing. We sought to 
understand how the organization of functional networks 
within the brain changes depending on the type of cognitive 
task performed by the participants. One focus was on 
studying the patterns of functional connectivity during WM 
tasks, which are crucial for the temporary storage and 
processing of information in the brain. By analyzing dynamic 
changes in functional connectomes during different cognitive 
tasks, potential associations were identified between specific 
network characteristics and cognitive performance. This 
investigation provides valuable insights into the underlying 
mechanisms of cognitive processes, particularly in relation 
to WM, and contributes to a deeper understanding of brain 
functioning and its relevance to cognitive abilities. 

MATERIALS AND METHODS

Participants
The study involved 67 people aged 18–34 years (m=21.7, 

SD=3.36), 20 females and 47 males, all right-handed, with 
no known injuries or neurological disorders. 

Written consent was obtained from all the study 
participants before the study screening in according to 
the study protocol approved by the Bioethics Committee 
of the Lomonosov Moscow State University (protocol N 8–ch 
of 13.05.2021).

Working memory task procedure
The experiment involved 10-min recording of resting-

state brain activity at 2-min intervals with closed and open 
eyes consecutively at 6 and 4 min of recording, respectively. 
Then, the participants were offered a task on WM — 
Sternberg item recognition paradigm (SIRP) [21]. In this 
paradigm, participants were shown sets of characters 
in the present study — a sequence of six digits (sample 
stimulus), and after a certain delay, one character (control 
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stimulus) was presented, and the participants had to 
determine whether this character was a part of the original 
set (Fig. 2). Each task comprised the following stages:
1. Presentation of a fixation cross in the center of the 

screen (presented for 0.5 s).
2. Presentation of the sample stimulus (2 s).
3. Postponement with repeated presentations of the fixation 

cross (2 s).
4. Presentation of the control stimulus — target or non-

target (0.5 s).
5. Time for the participant’s response with repeated 

presentations of the fixation cross (1.5 s).
In total, 129 stimuli were presented to each participant. 
PsychoPy version 2023.1.1 was used to program 

the experiment, present stimuli to the participants, and 
record behavioral data.

Neurophysiological data acquisition 
and processing

Brain activity was recorded using the 64-channel 
electroencephalographic (EEG) system actiCHamp (Brain 
Products GmbH, Germany). The recording was performed in 
the monopolar mode. The proprietary mounting of electrodes 
by Brain Vision (USA) based on the 10–10 system was used, 
with FCz as a reference electrode and AFz as a grounding 
electrode. An electromyogram was recorded using an 
electrooculography electrode placed under the right eye 
to correct artifacts from the oculomotor musculature. 
The frequency range of electrical signal registration was 
0.1–1000.0 Hz.

During preprocessing, EEG data were manually processed 
to remove major artifacts. The recording sampling frequency 
was then changed from 1000 to 250 Hz, the frequency range 
was limited to 0 and 50 Hz, and the reference electrode was 
changed from FCz to a virtual averaged reference. This 
stage of the preprocessing procedure was performed using 
BrainVision Analyzer 1.0 by Brain Products GmbH. 

At the final stage of preprocessing, oculomotor and other 
artifacts were removed by ICA, and damaged epochs and 
channels were restored using the Autoreject Library for 
Python [22].

Bioelectric signal sources were localized to more 
accurately determine the features of the distribution of neural 
electrical activity in the brain. The location of the sources was 
determined using the “average” head and brain magnetic 
resonance imaging model based on the “Buckner40” model. 
The “oct6” scheme was used (4098 points per hemisphere; 
the distance between sources was 4.9 mm, and the area for 
each source was 24 mm2). 

To calculate the forward operator using the boundary-
element model, areas with different conductivities were 
divided into triangular geometric units. For EEG data, 
three layers were used: the intracranial space, skull, and 
scalp. After that, the boundary-element model layers were 
assigned a conductivity value: for the scalp and parts of the 
brain, the default value was 0.3 S/m; for the skull, the default 
value was 0.006 S/m.

The activity of the sources was calculated using the dSPM 
method [23]. The result of the algorithm is the assessment 
of the activity of individual sources in the hemispheres 

Fig. 2. Scheme of the presentation of stimuli of the Sternberg Item Recognition Paradigm working memory task.
Рис. 2. Схема предъявления стимулов теста Стернберга на рабочую память (Sternberg Item Recognition Paradigm).
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(4098 per hemisphere), which were reduced to 75 zones in 
each hemisphere using the PCA method. The value of the 
first component was implemented. Zones in the brain cortex 
were extracted according to the Destrieux anatomical atlas 
[24]. Source localization procedures were performed using 
the MNE-Python 1.3.1 package.

Preprocessed EEG traces were subjected to connectivity 
estimation for each participant and condition (SIRP, closed 
eyes and open eyes), and adjacency matrices were constructed 
using the coherence method [25]. The connectivity for the entire 
interval for each condition, including SIRP execution, was 
estimated. This study focused on the evaluation of functional 
connectome differences linked to different cognitive states, 
not different levels of WM performance. Thus, no SIRP epochs 
were dropped, including those that were recorded during 
an unsuccessful trial of WM task execution. In this study, 
we focused on the alpha (8–13 Hz) and beta (13–30 Hz) 
frequency bands. EEG data were divided into 6-s epochs 
with a 0.5-window overlap to capture temporal dynamics. 
Coherence was calculated within each epoch and frequency 
band and averaged first with every single SIRP stimulus. 
Thereafter, coherence values were averaged across stimuli 
within the same frequency band, and adjacency matrices were 
constructed to represent functional connectivity. 

At present, no consensus has been established on 
the optimal value of the bond strength threshold for 
constructing adjacency matrices, although this procedure 
is an established part of the connectivity analysis process. 
In recent studies of functional connectivity, authors more 
often use fairly high values of the threshold of the strength 
of connections, up to 0.80–0.95 [26, 27]. However, a high 
threshold value can lead to the loss of a significant share 
of information because weak functional connections in brain 
networks can play an important role in the neural mechanisms 
of cognitive functions [28]. In this study, a less conservative 
threshold value of 0.7 was used. Functional connectivity was 
estimated using the MNE-Python 1.3.1 package.

Topological data analysis 
Topology is often colloquially described as representing 

the overall structure of the data. In addition to more localized 
and rigid geometric features, topological features are useful 
for capturing global, multiscale, and intrinsic properties 
of datasets. The usefulness of topological features has 
been acknowledged with the emergence of topological 
data analysis (TDA). Many researchers have attempted to 
use this information to gain a new perspective on their 
datasets. In recent years, an extension of TDA has emerged, 
which involves integrating topological methods to enhance 
traditional data analysis. 

A fundamental assumption in data analysis is that data 
possess a shape, meaning that they are sampled from an 
underlying low-dimensional manifold, which is referred to 
as the “manifold hypothesis” [29]. Instead of solely relying on 
statistical descriptions, TDA seeks to explore the underlying 

manifold structure of datasets algebraically. This involves 
computing descriptors of datasets that remain stable even 
when subjected to perturbations, and these descriptors 
encode intrinsic multiscale information about the data shape.

Data shape is a significant property, particularly in the field 
of network science. Numerous studies have investigated 
the topological structure of different biologically inspired 
data, from structural [30] and functional connectomes to eye 
movements [31] and single-cell activities. TDA techniques 
have gained popularity in processing EEG signals because 
they can aid researchers in discovering new properties 
of complex and extensive data by simplifying the analysis 
by implementing a geometrical approach. 

Fundamental topological data analysis 
definitions

Point clouds are a type of data representation in which 
data elements are represented as an unordered set of points 
in a Euclidean space with n dimensions, denoted as E n. A point 
cloud refers to a finite subset of E n. This type of data can be 
obtained from many natural experiments and can even be 
extracted from two-dimensional time series by disregarding 
the order of elements. The overall topology of point clouds 
can offer valuable insights into data structure.

The typical approach to transforming the data points in 
a cloud {xi} ⊆ E n into a single, unified topological object is to 
use them as vertices in a combinatorial graph. To determine 
the edges in the graph, an ε-sized window of proximity is 
defined such that points xi and xj are connected by an edge 
if their distance ρ(xi, xj) is less than or equal to ε. However, 
this graph has a two-dimensional structure and cannot 
adequately capture the high-dimensional properties of 
the original space from which the data points were sampled. 
To overcome this limitation, a mathematical object, known 
as a clique complex, can be constructed on any graph object 
using a specific method of creating a simplicial complex. 
Each clique on n vertices in the graph is interpreted as an 
(n–1)-dimensional combinatorial simplex. TDA methods 
work directly with these discrete constructions; however, 
their topological properties can be generalized to topological 
simplices, which are the topological realizations of such 
combinatorial simplices. Different methods of clique complex 
construction are available, and the most commonly used and 
useful ones are the Delaunay, Vietoris–Rips, Cech, and Alpha 
complexes. These indices are defined as follows:

Cech Cechε (X) = {σ⊆X |  Bε(x) ≠ }

Vietoris–Rips VRε(X) = {σ⊆X | diam(σ)≤2ε}

Delaunay Del(X) = {σ⊆X |  Vx ≠ },

 Vx = {y∈Rd | ||y–x||≤||y–z||, z∈X}

Alpha Alphaε(X) = {σ⊆X |  (Bε(x)  Vx) ≠ }
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One of the main methods of TDA is persistent homology, 
which considers the existence of an ordered pair (X, f) where 
X is a set of data points and f is a filter function defined in 
the domain of interest X. The filter function induces filtration 
of the set X, i.e., a sequence of subspaces 

 = X0⊆X1⊆X2⊆ ... ⊆Xn = X,

which are often the sublevel sets X = f –1(–∞,ε] of this 
function for an arbitrary real valued threshold parameter 
ε∈R. For example, assume that {VRi}

N
1 is a sequence of VR 

сomplexes associated with a point cloud X (data) for an 
increasing sequence of parameter values {εi}

N
1. 

VR1 → VR2 → ... → VRN,

where i is the inclusion maps between these complexes. 
Persistent homology provides a tool for examining 
homology not for a single complex VRi but for a whole 
sequence of homology groups in each dimension * and for 
all i<j

ι: H*(VRi) → H*(VRj).

The dimensions of homology vector spaces named Betti 
numbers β=dim(H* (X)) play the role of the most common 
topological invariants in data analysis practice. 

Persistent homology allows us to track and uncover 
the emergence and disappearance of topological features 
in various dimensions during filtration, where the threshold 
parameter є changes from –∞ to +∞. Persistent topological 
features are those that persist over a long interval of the 
threshold parameter, hence, the name “persistent”. 
The persistence of a homology group element is measured as 
the difference between the values of the filter function f at its 
death and birth moments, denoted by di and bi, respectively. 
In other words, it quantifies how long the homology group 
element has existed and how important it is for the overall 
topology of the space.

A concise method for summarizing information about 
the lifespan of elements in homology groups of a particular 
filtration is typically achieved using a “persistence diagram” 
(PD). These diagrams are used for any given dimension k 
the filtration and provide a compact representation of data 
descriptors.

{Dk
f(X)}k∈{0…K},

which is called a kth dimensional PD

Dfk(X): = {(bi,di)}
k

i∈I,

where {(bi,di}
k

i∈I is the multiset of birth-and-death 
intervals of topological features in the dimension k. 
An analogous way of thinking about PD is a multiset 

of points on the extended Euclidean plane R2  {+∞} in 
the birth-and-death coordinates.

To compare different PDs, different metrics, i.e., 
bottleneck and Wasserstein distances, are available. 
Given the two PDs D and D’, their bottleneck distance is 
defined as 

W∞(D,D’): = infη:D→D’supx∈D ||x–η(x)||∞,

where η: D → D’ denotes a bijection between the point 
sets of D and D’ and ||·||∞ refers to L∞ distance between two 
points in R2.

The Wasserstein distance is a generalization of the 
bottleneck metric and is defined as 

Wp(D1,D2): = infη:D1→D2
(  ||x–η(x)||∞

p)1/p.

In this study, TDA was used to analyze the topological 
structure of individual functional connectomes. Each 
functional connectome was interpreted as a simplicial 
complex; Vietoris–Rips complexes are mostly used in this 
study, and PDs in zero, one, and two dimensions were 
computed for each of them. Pairwise bottleneck distances 
between Vietoris–Rips complexes were computed and used 
to construct point clouds of the diagrams (Fig. 3). Finally, 
point clouds were compared using representation topology 
divergence (RTD), the topological measure of complex data 
representations, such as point clouds, which have topological 
and geometrical structures [32]. 

To vectorize PDs, different functions that represent 
diagrams in vector form, for example, Betti curves, can 
be used. Let D be a PD, then Betti curve in i th dimension is 
a function βi: R → N, from real numbers to natural numbers, 
where βi (s) is the number, counted with multiplicity, of points 
(bi, di) in D such that bi ≤ s < di. Betti curve values βi (s) 
describe the i th Betti number or the count of the independent 
i-cycles in each graph after all cliques have been filled in or 
i-dimensional “holes” (A 1-cycle bounds a 2D area, a 2-cycle 
bounds a 3D volume, etc.).

All topological computations were performed using 
the Python gudhi 3.8.0 package [33]. 

RESULTS
The times of birth and death of one- and two-dimensional 

holes and connected components during the filtration process 
provide significant information about the graph structure and 
its possible functional roles. PDs correspond to two states 
of similar cognitive activity levels: the resting states with 
closed and open eyes form topologically and geometrically 
equal point clouds in a two-dimensional space, with the RTD 
distance between them equal to 9. By contrast, the distance 
between point clouds formed by PDs corresponding to 
different cognitive states drastically increases (for 25%) and 
equals 11 (Fig. 4). 
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In addition, the speed of two- and three-dimensional 
hole deaths and appearance is significantly higher for 
functional networks during SIRP. The topological structure 
of connectomes during SIRP becomes equal to the resting-
state networks only at the 20000th filtration step (Fig. 5). This 

supports the reconfiguration hypothesis, which states that 
functional networks of cognitively loaded tasks of solving 
reconfigure faster. 

Conversely, little difference was observed between 
networks in the resting state with open or closed eyes. 

Fig. 3. The left picture represents the combination of two persistence diagrams: D1 (blue) and D2 (red), and the dots correspond to 
moments of the homology vector space basis elements death at specific filtration step ε. The two right pictures represent the difference 
between the information taken into account in Bottleneck and Wasserstein distances between diagrams.
Рис. 3. На рисунке слева представлена комбинация двух персистентных диаграмм (persistence diagrams): D1 (синим) и D2 (крас-
ным), с точками, соответствующими моментам гибели базисных векторов пространства гомологий. На двух правых рисунках 
отображена разница между информацией, учтённой при расчёте расстояний бутылочного горлышка (Bottleneck) и Вассерштейна 
между диаграммами.

Fig. 4. The left picture shows the resulting point clouds for each of the three functional states (SIRP, closed eyes and open eyes) and 
clearly demonstrates the spatial discrepancy between persistence diagrams (points in the clouds), i.e., the cloud corresponding to 
the SIRP functional state is located far from the resting state clouds (closed and open eyes functional states). The right picture shows 
the matrix of pairwise distances (representation topology divergence metric [32]) between point clouds. Here: PCs, point clouds; PDs, 
persistence diagrams; RTD, representation topology divergence; SIRP, Sternberg item recognition paradigm.
Рис. 4. На рисунке слева показаны результирующие облака точек для каждого из трех функциональных состояний (SIRP, за-
крытые глаза и открытые глаза) и наглядно демонстрируется пространственное несоответствие между персистентными диа-
граммами (точки в облаках), т.е. облако, соответствующее функциональному состоянию SIRP, расположено далеко от облаков 
состояния покоя (c закрытыми и открытыми глазами). На правом рисунке показана матрица попарных расстояний (метрика 
Representation Topology Divergence [32]) между облаками точек. Здесь: PCs — облака точек; PDs — персистентные диаграммы; 
SIRP — тест Стернберга; RTD — representation topology divergence metric.
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The general topological structure is quite similar, i.e., 
the times of the birth and death of the topological features 
do not differ during these states. 

Real-world biological networks have significantly 
distinguished clique topologies compared with random 
networks [34]. If a correlation matrix is not random, 
it can uncover the “geometric” structure of data and 
indicate that neurons encode geometrically organized 
stimuli. To test the statistical significance of the observed 
topological properties, random distance matrices 
on the same number of vertices were generated as 
the number of vertices in the functional connectomes, 
and their Betti curves with similar dimensions were 
computed (See Fig. 5). 

DISCUSSION
This study used a graph theory-driven approach to 

examine the complex causality patterns derived from EEG 
recordings. The aim of this study was to identify distinct 
topological properties of neural networks associated 
with the processing of information in WM and topological 
features of resting-state networks, captured in close 
vicinity of the moment of execution of the cognitive task. 

This was elicited during visual SIRP performed in healthy 
middle-aged adults.

Topological features, such as the time of birth of the 
zeroth, first, and second homology group generators, i.e., 
network-connected components, one- and two-dimensional 
holes, differ significantly depending on the current cognitive 
state. Furthermore, analysis has shown that functional 
connectivity in WM tasks demonstrates a higher speed 
of homology group generator appearance, providing evidence 
in favor of links between early phases of WM execution 
and increased global integration in functional networks. 
Moreover, because connector hubs are the nodes that 
highly participated in global network interconnections, we 
hypothesize that they contribute the most to the higher speed 
of birth and death of homology groups. Thus, the described 
topological properties can be linked with hub-based network 
configuration in the cognitive load.

These findings suggest that TDA, performed on EEG-
derived functional connectivity, can represent the complexity 
of functional networks underlying cognitive functions, 
including WM, highlighting the peculiar properties of the 
topological features of brain networks in the resting state 
and selectivity to dynamics occurring during processing 
of memory items.

Fig. 5. Mean Betti curves for dimensions 1 and 2 averaged across all participants. The Y-axis corresponds to the Betti numbers of the 
specific dimension: 1 or 2. The X-axis corresponds to the filtration steps for an increasing sequence of parameter values {εi}

N
1, where 

N=60000. Here: sternberg, values for networks in Sternberg item recognition paradigm execution; closed eyes, values for networks 
in the resting state with closed eyes; open eyes, values for networks in the resting state with open eyes; random network, values for 
randomly generated networks of corresponding dimensions.
Рис. 5. Средние кривые Бетти для измерений 1 и 2, которые усреднены по всем участникам. Ось Y соответствует числам Бетти 
конкретного измерения: 1 или 2; ось X — шагам фильтрации для возрастающей последовательности значений параметров {εi}

N
1, 

где N=60000. Здесь: sternberg — значения для сетей при выполнении теста Стерберга; closed eyes — для сетей в состоянии 
покоя с закрытыми глазами; open eyes — для сетей в состоянии покоя с открытыми глазами; random network — для случайно 
сгенерированных сетей соответствующих размеров.
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Networks in the resting state and cognitive 
load

Our data suggest that the functional networks of 
the human brain demonstrate a significantly distinct 
topology depending on the current level of cognitive 
load. Resting-state networks were constructed from data 
acquired when participants had their eyes closed or open. 
When a participant can visually inspect the surrounding 
space while not experiencing any cognitive load, brain 
activity changes and adapts in response to the need to 
support neural processes of visual perception. These 
changes express some whole-brain features, such as 
the suppression of alpha-band EEG activity, which is linked 
to preparatory visual attention [35]. From the perspective 
of complex network analysis, resting-state brain activity 
with open or closed eyes suggests differences in properties 
connected to specific cognitive ability networks. According 
to a previous study, the coordinated activity between 
the cingulo-opercular and right-frontoparietal networks is 
associated with visual processing, resulting in increased 
integration in visual perception [36].

On the contrary, topological analysis, performed in 
this study, showed a little difference between networks in 
the resting state with open or closed eyes. We speculate that 
the observed insensitivity of homology group generator death 
reflects a stronger linkage of given network characteristics 
to high-level information processing, which occurs during 
dedicated problem solving, but not background perception 
and processing. 

Such results correlate with the predictions of the global 
workspace theory [37], according to which, when accessing 
the global workspace, the flow of information becomes 
an object of conscious processing and is available for 
conscious reporting and flexible behavior control. Moreover, 
entering the workspace enhances this flow relative to 
others, which are also inhibited. In many cognitive models, 
the concept of a workspace is associated with arbitrary 
attention and WM; therefore, the limits on the capacity 
of the workspace correspond to the limits usually set for 
focal attention or WM [38]. A dynamic model of workspace 
formation was proposed; accordingly, the community 
structure of locally synchronized modular subsystems for 
unconscious processing can be functionally rearranged by 
the launch of a globally synchronized system representing 
a consciously processed stimulus [39]. Such dynamic 
transitions from modular to global synchronization have 
been demonstrated in computational models, including 
those using data on the structure of anatomical networks 
of humans or model animals [40]. Thus, as observed in 
our study, the higher rapidity of birth of the zeroth and first 
homology group generators in WM task execution may 
reflect the abovementioned process of conscious processing 
of information in the workspace, which occurs alongside 
the suppression of other data flows.

Features of the network topology in working 
memory tasks

The human brain is a complex organ and can reorganize 
and adapt in response to environmental changes. Collected 
evidence suggests that ICNs are the functional basis 
of cognitive functions, with specific global states related 
to cognitive performance [41]. Our results support this 
hypothesis, showing faster local network integration 
during the processing of working tasks in contrast with 
lesser early functional network integration in resting 
states. The greater number of new connected components 
in the functional connectome in the early stages of WM 
task execution can be interpreted as a process of a faster 
establishment of high-degree hubs in functional networks. 
Thus, networks reconfigure faster to a topology with 
a more expressed, highly connected core of the “rich club”. 
Based on the asymmetrical distribution of the number 
of connected components over time with a shift to the left, 
we suggest that a greater number of new nodes are 
included in the “rich club”, moving from the status of being 
provincial hubs to being global hubs in the early stages 
of information processing in WM. Such features of network 
reconfiguration can indicate processes in the brain during 
which certain ICNs are included in the global functional 
network. The connection of topological changes with 
the phase of information processing in WM suggests that 
the described process is specific depending on the cognitive 
function performed, which is consistent with the concept 
of ICNs specific to various cognitive functions.

These findings correspond with those of recent network 
neuroscience studies, suggesting that a more globally 
integrated network with less specialized segregation may be 
effective in sustaining WM [42]. The content of WM is defined 
by the interaction between selective perceptual information 
processing (such as visual or auditory information) operated 
via selective attention and long-term memory representations 
that are in a state of “accessibility” and require persistent 
activity of specialized networks controlled by attentional 
processes [43]. Therefore, a whole-brain network with high 
global information transfer (integration) may better sustain 
an optimal interplay between locally specialized networks, 
as seen in the local organization of WM subnetworks.

CONCLUSION
This study used topological data analysis to analyze 

electroencephalographic recordings and identify 
the topological properties of neural networks involved in 
working memory processing. Sternberg item recognition 
paradigm was performed in healthy middle-aged adults. 
The study examined resting-state networks and connectivity 
in cognitive load to understand topological features specific 
to each state and the nature of network reconfiguration in 
the transition between states.
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This study revealed a significant association between 
the topological characteristics of functional connectomes and 
the level of cognitive load undertaken by the participants. 
During working memory tasks, the analysis indicated 
a quicker emergence of homology group generators, 
suggesting a connection between the execution of working 
memory tasks and enhanced rapid integration of networks.

Overall, this study suggests that topological data 
analysis can represent the complexity of functional networks 
underlying cognitive functions, including working memory. 
This study highlights the unique properties of topological 
features of brain networks in the resting state and selectivity 
to dynamics during the processing of memory items.
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