Поиск Кабинет

Влияние GCSF на проангиогенные свойства мобилизированных клеток периферической крови у больных с хронической сердечной недостаточностью

Гены & Клетки: Том VI, №3, 2011 год, стр.: 71-75

 

Авторы

Коненков В.И, Повещенко О.В., Ким И.И., Покушалов Е.А., Романов А.Б., Гульева Н.А., Бернвальд В.В., Шевченко А.В., Голованова О.В., Янкайте Е.В., Повещенко А.Ф., Караськов А.М.

ДЛЯ ТОГО ЧТОБЫ СКАЧАТЬ СТАТЬЮ В ФОРМАТЕ PDF ВАМ НЕОБХОДИМО АВТОРИЗОВАТЬСЯ, ЛИБО ЗАРЕГИСТРИРОВАТЬСЯ

В связи с эффективностью интрамиокардиальной клеточной терапии при ишемической болезни сердца (ИБС), целью работы является оценка фенотипических характеристик и цитокин-продуцирующих свойств мононуклеарных клеток, мобилизованных введением препарата G-CSF из костного мозга пациентов с сердечной недостаточностью, развившейся после перенесенного острого инфаркта миокарда. В исследование включено 67 пациентов с ИБС, III–IV функциональным классом хронической сердечной недостаточности (по классификации NYHA), получающих современную стандартную терапию. Показано, что введение препарата G-CSF приводит к мобилизации эндотелиальных прогениторных клеток (ЭПК) из костного мозга в периферическую кровь (CD34+/CD133+ и CD34+/KDR+ популяций). Интрамиокардиальное введение клеток приводит к улучшению перфузии в зонах введения у 76% пациентов. У пациентов с выявленным улучшением перфузии миокарда количество CD34+CD133+ ЭПК в 3,2 раза выше, чем у пациентов без эффекта или с ухудшением. Мононуклеарные клетки после введения G-CSF в 48-часовой культуре секретируют цитокины Epo, GM-CSF, TNF-α, способствующие улучшению кровоснабжения миокарда. Периферическая кровь является доступным источником ЭПК, а мононуклеары после мобилизации способны оказывать репаративное действие на ишемизированный миокард.

Хроническая сердечная недостаточность (ХСН), возникающая чаще всего при ишемическом поражении миокарда, является одной из главных причин заболеваемости и смертности, а также снижения качества жизни пациентов. В настоящее время у значительного число больных не отмечается значимого клинического улучшения после выполнения традиционных методов повторной васкуляризации, таких как ангиопластика или коронарное шунтирование, что определяет необходимость разработки терапевтических методов, направленных не только на улучшение функционального состояния миокарда, но и репаративную регенерацию сердечной мышцы. Учитывая роль стволовых/прогениторных (СПК) клеток в развитии, поддержании и восстановлении стареющих или пораженных тканей взрослого организма, они представляют собой альтернативную стратегию лечения сердечно-сосудистой патологии. Доступным источником аутогенных СПК является периферическая кровь после фармакологической мобилизации клеток костного мозга человеческим рекомбинантным гранулоцитарным колониестимулирующим фактором (G-CSF). В экспериментальных работах на модели инфаркта миокарда (ИМ) показано, что введение G-CSF в течение 4–5 сут. приводит к уменьшению размера зоны ишемического повреждения, улучшению функциональных показателей работы сердца [1]. Но моделирование ИМ не в полной мере отражает все процессы динамического развития ИБС у человека. Несмотря на показанную возможность мобилизации СПК, в том числе эндотелиальных прогениторных клеток (ЭПК), в кровоток, клиническая эффективность применения G-CSF путем последовательных инъекций у пациентов с сердечнососудистой патологией низкая, что может быть связано с недостаточной миграцией СПК в пораженный миокард [2]. Поэтому сочетание мобилизации СПК с локальным или системным введением аутогенных СПК пациенту является на сегодняшний день основным подходом в клеточной терапии ИБС. Наряду с гемопоэтическими предшественниками, периферическая кровь после мобилизации СПК является источником и ЭПК, которые способствуют поддержанию эндотелиальной целостности и постнатальной неоваскуляризации тканей организма [3, 4]. Образование новых сосудов может осуществляться как за счет ангиогенеза, так и путем васкулогенеза из ЭПК, когда в ответ на ангиогенные ростовые факторы ЭПК мигрируют, пролиферируют и дифференцируются в зрелые эндотелиоциты [4–9].

С учетом спорных результатов начальных клинических исследований, необходимо более полное понимание биологических свойств используемых клеток у пациентов с ХСН. Ключевой аспект в области научных исследований в рамках клеточной терапии представляет фенотипическая и функциональная характеристика СПК.

Цель нашего исследования состояла в оценке фенотипических характеристик и цитокинпродуцирующих свойств мобилизованных в кровоток мононуклеарных клеток костного мозга пациентов с сердечной недостаточностью, развившейся после перенесенного острого инфаркта миокарда.

Материал и методы

В исследование приняли участие 67 пациентов с ИБС, III–IV функциональным классом ХСН (по классификации NYHA), получающих современную стандартную терапию. Средний возраст больных составлял 57,0±7,7 (M±m) лет, 91% из них мужчины. Длительность анамнеза болезни в части ИБС составляла 7,2±5,4 лет, количество перенесенных ИМ – 1–2, фракция выброса левого желудочка < 35%, длительность периода от последнего ИМ – не менее 12 мес. Пациенты находились на лечении в ФГУ «НИИ патологии кровообращения им. ак. Е.Н Мешалкина Федерального агентства по высокотехнологичной медицинской помощи», Новосибирск. Письменное информированное согласие было получено от всех пациентов. Протокол исследования одобрен локальными Этическими комитетами, утвержден Учеными Советами обоих учреждений соисполнителей.

Введение рекомбинантного человеческого G-CSF (TEVA Pharmaceutical Industries Ltd, Israel) осуществлялось инъекционно подкожно в дозе 3,3–5,0 мкг/кг веса в течение 5 сут. На 6-е сут. проводилась процедура аппаратного цитафереза на сепараторе клеток крови «Haemonetics MCS+». Выделение фракции мононуклеаров крови осуществлялось на градиенте плотности фиколла-верографина (ρ = 1,078) (БиолоТ, СПб).

Фенотипирование иммунокомпететных клеток проводили с помощью проточного цитометра FACSCantoII (Becton Dickinson, США) в программе FACSDiva (Becton Dickinson, США), в соответствии с инструкциями к прибору. Для поверхностного маркирования использовали моноклональные антитела к CD34, CD45, CD133, KDR, меченные флюоресцеином изотиоцианатом (FITC), фикоэритрином (PE), аллофикоцианином (APC) в количестве, рекомендуемом производителями (Becton Dickinson, AbCam, Novus Biologicals,США). Интрамиокардиальные инъекции осуществлялись через катетер, проведенный через бедренную артерию под навигационным контролем системы NOGA XP (Biosense-Webster) в зоны гибернированного (жизнеспособного, но ишемизированного) миокарда в количестве 300×106 мононуклеаров крови в 10 точек по 0,2 мл.

Для определения содержания цитокинов мононуклеары культивировали в течение 48 ч при 37°С в CO2-инкубаторе в круглодонных 96-луночных планшетах в среде RPMI-1640 с 10% FCS, дополненной 0,3 мг/мл L-глютамина (БиолоТ, СПб). Культивирование проводили в присутствии липополисахарида (Escherichia coli 0111:B4, Sigma) в конечной концентрации 10 мкг/мл или конканавалина А (КонA, Sigma) в конечной концентрации 15 мкг/мл, а также в отсутствие митогенной стимуляции. Отобранные супернатанты (аликвотами по 0,2 мл) хранили при -70°С до тестирования.

Содержание в супернатантах мононуклеаров цитокинов (TNF-α, IL-10, GM-CSF) оценивали методом проточной флюориметрии на двулучевом лазерном автоматизированном анализаторе (BioPlex Protein Assay System, BioRad, США) с использованием коммерческих тест-систем в соответствии с инструкцией фирмы-производителя. Методом иммуноферментного анализа (ИФА) оценивали содержание эритропоэтина (Epo) (Вектор-Бест). Интенсивность иммуноферментной реакции измеряли на автоматическом спектрофотометре (STAT FAX-2100) при длине волны 492 нм.

ЭКГ-синхронизированная томосцинтиграфия (SPECT) миокарда проводилась с использованием технеция (Tc-99m tetrofosmin) в покое и при фармакологическом «стрессе» с внутривенным введением аденозина (0,14 мг/кг/ мин в течение 6 мин). Оценка результатов проводилась в 10 сегментах: каждому сегменту определяли балл от 0 до 4 (0 – нормальная деятельность, 4 – нет активности).

Статистическая обработка полученных результатов проводилась методами описательной и непараметрической статистики на персональном компьютере с использованием программы «STATISTICA for Windows 6.0». Для описательной статистики использовались средние арифметические величины и стандартные отклонения (М±m). Для оценки достоверности различий использовался непараметрический критерий Манна – Уитни, Вилкоксона.

Результаты и обсуждение

Для оценки эффекта мобилизации СПК в периферическое русло использовался маркер гемопоэтических стволовых клеток СD34. Показано, что у пациентов с ХСН в нестимулированных условиях количество циркулирующих CD34+ клеток составляет 0,057±0,04%. После введения G-CSF на 6 сут. число CD34+ возрастает в 10,7±6,8 раз и достигает 0,57±0,37 % (рис. 1А). Введение G-CSF приводит к мобилизации из костного мозга не только гемопоэтических стволовых клеток, но и сопровождается повышением в кровотоке пула ЭПК, которые идентифицируются по экспрессии трех маркеров: CD34, CD133 и рецептора сосудистого эндотелиального фактора роста – VEGFR2 [10].

Нами показано, что на 6 сут. после мобилизации G-CSF у пациентов с ХСН происходит не только увеличение количества СD34+ клеток, но и увеличивается число СD34+ клеток, которые ко-экспрессируют СD133 (рис. 1Б). Содержание СD34+СD133+ клеток возрастает в 12,8 раз и составляет к 6-м сут. 0,1±0,07%. Количество CD34+VEGFR2+-эндотелиальных предшественников при введении G-CSF увеличивается и составляет 0,13±0,07% (рис. 1В), что согласуется с литературными данными [4, 11].

ЭПК периферической крови после мобилизации G-CSF представляют собой гетерогенную популяцию: включают как CD34+, так CD34– клетки. Показано, что популяция CD133+CD34–-клеток, так же, как и популяция CD133+CD34+ клеток, способствует регенерации сосудов [10, 11]. Нами показано, что до стимуляции G-CSF определяется популяция CD133+CD34–-клеток, численность которой после введения G-CSF возрастает в 5 раз и составляет в среднем 0,1% от общего числа мононуклеаров крови (данные не представлены). Также возрастает популяция CD34–-клеток, экспрессирующих VEGFR2 – с 0,25% до 2%. Высокий уровень экспрессии VEGFR2 может свидетельствовать о присутствии в мононуклеарной фракции после мобилизации как одной из популяций ЭПК (CD14+CD34–), так и зрелых эндотелиоцитов [9].

ЭПК способны оказывать репаративное действие на ишемический миокард как прямым включением в стенку сосуда (васкулогенез) и/или дифференцировкой в кардиомиогенном направлении, так и опосредованным действием – синтезом факторов роста, усиливающих локальный ангиогенез и улучшающих перфузию миокарда, и цитокинов, стимулирующих мобилизацию СПК костного мозга [9, 12].

Через 6 месяцев после интрамиокардиального введения мононуклеаров крови после мобилизации G-CSF у 76% пациентов улучшились показатели перфузии в сегментах, в которые вводили клетки, у 24% больных перфузия миокарда осталась без изменения или ухудшилась.

Визуализация отсроченных сцинтиграмм с оценкой перераспределения изотопа в миокарде как суммы баллов исследуемых сегментов показала, что суммарная оценка области сниженного накопления препарата (дефекты перфузии или гипоперфузия) в миокарде левого желудочка в покое составила 24±11 балла до лечения, 19±13 через 6 мес. и 21±12 к 12 мес. наблюдения (рис. 2).

Также уменьшилось количество участков гипоперфузии на нагрузочном этапе (в ответ на инфузию аденозина) до 22±12 и 23±10 к 6 и 12 мес. соответственно по сравнению с показателем 27±11баллов до лечения. Снижение дефектов перфузии на нагрузке и в покое свидетельствует об увеличении кровоснабжения и, таким образом, доли жизнеспособного миокарда. Отсутствие изменений в миокардиальной перфузии в областях, отдалённых от зоны клеточного воздействия, и выявленное значительное улучшение миокардиального резерва в сегментах, подвергшихся воздействию, косвенно доказывает положительный эффект от введения в миокард аутогенных СПК. Статистически значимыми являются результаты к 6 мес. наблюдения, к 12 мес. показатели перфузии несколько ухудшаются и становятся недостоверными по сравнению с результатами до начала лечения. Наши результаты согласуются с литературными данными, показывающими, что не только СПК костного мозга, но и селектированные CD133+прогениторные клетки, введенные интракоронарно и интрамиокардиально, способны воздействовать на перфузию, увеличивать плотность капилляров и экспрессию VEGF в ишемическом миокарде [13, 14]. Тем не менее, учитывая малое количество наблюдений, а также отсутствие контрольной группы, результаты не могут полностью доказывать, что трансплантация аутогенных СПК улучшает перфузию миокарда.

В проведенных исследованиях показано, что решающим фактором эффективности проводимой терапии является доза вводимых пациенту СПК [15, 16]. Нами проведен анализ количества различных популяций прогениторных клеток (CD34+, CD34+CD133+, CD34+VEGFR2+) после мобилизации в зависимости от результатов лечения, оцениваемых по перфузии (табл.1). Мы показали, что у пациентов с положительным эффектом клеточной терапии в виде улучшения перфузии миокарда в 3,2 раза выше количество CD34+CD133+-СПК (0,08±0,02% среди мононуклеаров), чем у пациентов без эффекта или с ухудшением (0,025±0,005%). Достоверных различий количества CD34+ и CD34+VEGFR2+клеточных популяций не наблюдалось. В кровотоке после G-CSF-мобилизации содержатся различные популяции прогениторных клеток, которые, очевидно, могут воздействовать на различные звенья репарации миокарда. Мы идентифицировали минорную CD34+CD133+ популяцию ЭПК, которая может способствовать стимуляции ангиогенеза в миокарде.

Показано, что привнесенные в миокард клетки, в том числе СПК, выделяют различные биоактивные вещества: факторы роста, цитокины – основные эффекты которых выражаются в мощной индукции репаративных процессов в месте повреждения [17]. Трансплантация клеток влияет на ремоделирование миокарда, улучшает механические свойства рубцово-измененной мышцы сердца, улучшает васкуляризацию миокарда, усиливая ангиогенез. Мы исследовали содержание ряда цитокинов в супернатанте при культивировании мононуклеаров крови в течение 48 ч и рассмотрели роль некоторых из них в ангиогенезе.

Было установлено, что мононуклеары после мобилизации продуцируют в 48-часовой культуре Epo, GM-CSF, TNF-α в высоких концентрациях (табл. 2), причем у пациентов с положительными изменениями перфузии, культивированные мононуклеары продуцируют больше указанных цитокинов (17,6±1,7; 46,2±16 и 1343±857 соответственно), чем у пациентов с ухудшением (15,8±1,8; 10,3±2,5 и 560±60 соответственно). Мононуклеары обладают большим функциональным резервом, увеличивая секрецию GM-CSF, TNF-α в 15–30 раз в присутствии Т-клеточного митогена КонА как в группе пациентов с улучшением, так и с ухудшением. Уровень Epo не изменяется под воздействием митогена, но высок в культуре. Известно, что самым мощным ангиогенным фактором является VEGF, содержание которого прямо коррелирует с количеством ЭПК [8]. Но также показано, что введение Epo пациентам с сердечной недостаточностью способствует улучшению кровоснабжения. Epo стимулирует неоваскуляризацию, повышая экспрессию VEGF в ишемизированных тканях и воздействуя на эндотелиальные клетки, экспрессирующие его рецептор [18]. TNF-α является не только цитокином с провоспалительными свойствами, но и воздействует на различные звенья ангиогенеза, обладает антиапоптотическим действием [19], стимулирует продукцию матриксных металлопротеиназ в эндотелии. GM-CSF, являющийся фактором стимуляции пролиферации и дифференцировки гемопоэтических клеток, может также стимулировать различные звенья ангиогенеза [17]. Кроме того, GM-CSF и Epo способны мобилизировать СПК из костного мозга и при введении клеток в миокард возможен дополнительный выход СПК в периферическое сосудистое русло, что усиливает клинический эффект.

Таким образом, G-CSF эффективно способствует мобилизации ЭПК из костного мозга в кровоток у пациентов с ХСН. Одним из эффектов интрамиокардиального введения клеток является улучшение перфузии, следовательно, васкуляризации миокарда, и стимуляции неоангиогенеза путем паракринного воздействия продуцируемых цитокинов и факторов роста. Введенные в миокард клетки могут, кроме ЭПК, содержать мезенхимные мультипотентные стромальные клетки, моноцитарные клетки, которые вместе с ЭПК стимулируют не только неоваскуляризацию миокарда, но и уменьшают воспаления, воздействуют на ремоделирование миокарда и в итоге способствуют улучшению функционального состояния сердечной мышцы. Остается добавить, что использование в качестве источника аутогенных ЭПК периферической крови пациентов с ХСН обладает явными технологическими преимуществами перед другими тканевыми источниками их получения.

Подняться вверх сайта