Поиск Кабинет

Стволовые клетки в регенеративной терапии сердечных заболеваний: роль межклеточных взаимодействий

Гены & Клетки: Том IV, №1, 2009 год, стр.: 43-51

 

Авторы

Плотников Е.Ю., Зоров Д.Б., Сухих Г.Т.

ДЛЯ ТОГО ЧТОБЫ СКАЧАТЬ СТАТЬЮ В ФОРМАТЕ PDF ВАМ НЕОБХОДИМО АВТОРИЗОВАТЬСЯ, ЛИБО ЗАРЕГИСТРИРОВАТЬСЯ

Заместительная регенеративная клеточная терапия представляет наиболее перспективный инновационный метод в борьбе с последствиями инфаркта миокарда и другими функциональными и структурными изменениями сердца. В качестве материала для клеточной трансплантации и регенерации миокарда наиболее широко используются эмбриональные стволовые и мезенхимальные стволовые клетки, а также некоторые другие типы стволовых и прогениторных клеток. Основная задача, возлагаемая на стволовые клетки — дифференцироваться в функционально активные кардиомиоциты и интегрироваться в ткань миокарда реципиента. Управление дифференцировкой стволовых клеток в миокарде идет за счет влияния микроокружения и прямой межклеточной сигнализации, которая регулирует направление дифференцировки. В настоящее время экспериментально подтверждены три основных типа взаимодействия стволовых/прогениторных клеток с кардиомиоцитами, в той или иной степени связанные с трансдифференцировкой. Это слияние клеток, образование межклеточных контактов классического типа (щелевые «дар» контакты) и недавно описанный тип взаимодействия — туннельные нанотрубочки. В обзоре рассмотрены данные по положительному влиянию стволовых и прогениторных клеток при заболеваниях сердца и роли межклеточных взаимодействий в реализации этих эффектов.

Введение

Клеточная терапия для регенерации и восстановления функций миокарда перешла в последнее время из области экспериментальных работ к клиническим испытаниям. На это направление лечения тяжелых сердечных заболеваний большие надежды возлагают как врачи, так и пациенты. Заболевания сердца и сосудов, прежде всего, инфаркт миокарда (ИМ), по-прежнему занимают ведущее место среди причин смерти больных в развитых странах. Проблема ишемических повреждений в случае сердца значительно усугубляется ограниченной способностью кардиомиоцитов к регенерации, из-за чего, как при остром инфаркте, так и при хронической ишемии происходит замещение функциональных клеток соединительной тканью, что приводит к изменению электрической проводимости и дисфункции миокарда.

Традиционные методы фармакологического лечения направлены на защиту и поддержание деятельности рабочего миокарда. Единственным способом радикального лечения остается применение тканевых трансплантатов сердца или сердечно-легочных комплексов. В мире ежегодно проводится 2,7^4,5 тыс. трансплантаций сердца и комплекса «сердце^пегкие» [1, 2]. Однако, такие операции очень травматичны, высок процент летальности, обязательна серьезная медикаментозная поддержка для предотвращения отторжения из-за иммунологической несовместимости, подходящий трансплантационный материал дефицитен, и очередь на такую операцию расписана вперёд на несколько лет, сокращая, тем самым, для многих шанс выжить. Поэтому заместительная регенеративная клеточная терапия представляется наиболее перспективным инновационным методом в борьбе с последствиями ИМ и другими функциональными и структурными изменениями миокарда.

Типы применяемых для терапии клеток

В качестве материала для клеточной трансплантации и регенерации миокарда наиболее широко используются эмбриональные стволовые и мезенхимальные стволовые клетки (ММСК). Эмбриональные стволовые клетки ИСК) представляют собой плюрипотентные клетки, полученные из клеток бластоцисты и самоподдержи-вающиеся в культуре, то есть обладающие высоким пролиферативным и клоногенным потенциалом. При этом они способны дифференцироваться практически в любые клетки организма. Первые линии мышиных ЭСК были получены в 1981 году М. Evans и М. Kaufman [3], человеческие ЭСК научились культивировать в 1998 г. J. Thomson и соавт. [4]. С тех пор ЭСК рассматриваются как средство регенеративной и заместительной клеточной терапии, в том числе и миокарда. Дифференцировать мышиные ЭСК в кардиомиоциты удалось в 1985 г. [5], однако только в 90-х годах XX в. начались широкие исследования способов направленной диффе-ренцировки ЭСК в клетки миокарда с целью их дальнейшего использования для оптимизации его регенерации. В 2001 г. удалось дифференцировать человеческие ЭСК в кардиомиоциты, обладающие специфическими структурными и функциональными характеристиками [6]. Такие кардиомиоциты, пересаженные в сердце свиньи, проявляли пейсмейкерную активность и формировали устойчивые связи с клетками миокарда реципиента [7]. Тем не менее, по причинам, описанным ниже, опыт применения ЭСК для экспериментального лечения повреждений миокарда остается пока весьма незначительным. В частности, показано, что введение крысам с инфарктом миокарда ЭСК в зону инфаркта или коронарную артерию приводило к уменьшению очага поражения и улучшению сократительной функции желудочка [8, 9]. Через несколько недель после введения мышиные ЭСК превращались в кардиомиоциты, сходные с клетками реципиента, при этом не наблюдалось иммунного отторжения.

Таким образом, ЭСК представляются весьма перспективным объектом для терапии сердечных заболеваний, однако на пути их активного применения стоит ряд серьезных проблем. Помимо этических аспектов при их получении из эмбриона, проблему представляет высокая туморогенность ЭСК при введении в организм; направление их дифференцировки часто малопредсказуемо, что приводит к высокой вероятности образования тератом[10]. Кроме того, стандартные методы работы с ЭСК предполагают стадию культивирования на подложке из мышиных эмбриональных фибробластов, что ведет к возможности контаминации клеток.

Очевидно, наиболее перспективны ЭСК в качестве исходного материала для дифференцировки in vitro в кардиомиоциты, которые затем могут использоваться для трансплантаций. Об этом говорят и недавние исследования по введению овцам с постинфарктной сердечной недостаточностью мышиных ЭСК, коммитиро-ванных по пути дифференцировки в кардиомиоциты[11]. Такие частично дифференцированные ЭСК, введенные в зону очага инфаркта или по его периферии, вызывали регенерацию миокарда и восстановление функции, причем как при наличии, так и в отсутствии иммуносупрессорной терапии. Аналогичные данные были получены при введении человеческих ЭСК, дифференцированных в кардиомиоциты, крысам с аритмией, где эти клетки формировали участок человеческого миокарда [12].

Мультипотентные мезенхимальные стромальные клетки

Мультипотентые мезенхимальные стромальные клетки (ММСК) представляют другой активно изучаемый тип стволовых клеток, перспективных для восстановления поврежденной ткани миокарда. Их исследования ведутся с 1 966 года, когда ММСК были впервые обнаружены в костном мозге [13]. Несмотря на то, что ММСК составляют минорную фракцию (около 0,01%) стволовых клеток костного мозга [14] по сравнению с гемопоэти-ческими стволовыми клетками (ГСК), они играют огромную роль в репаративных процессах in vivo и оказались чрезвычайно востребованы для клеточных технологий. До изучения фенотипических особенностей ММСК выделялись и описывались как культура адгезивных стро-мальных клеток костного мозга, характеризующихся высокой пролиферацией и мультипотентностью. Затем ММСК были охарактеризованы по многим маркерным белкам (CD29, CD44, CD105, Sca-1 и др.), и появилась возможность выделять их с помощью FACS [ 15—17] и MACS [17] технологий.

В 1999 г. была показана возможность дифференцировки ММСК в кардиомиоциты in vitro [18], а в 2001 г. дифференцировка костномозговых клеток в кардиомиоциты была показана in vivo при трансплантации в сердце после инфаркта [19]. Однако, при этом не была исключена возможность возникновения кардиомиоцитов из ГСК, которые также присутствовали в клеточной суспензии. В дальнейшем возможность дифференцировки в кардиомиоциты подвергалась сомнениям [20]; хотя единого мнения по этому поводу так и не сформировано.

С другой стороны, мультипотентность ММСК костного мозга и их способность дифференцироваться в кардиомиоциты, в том числе при сокультивировании, были неоднократно доказаны [21 —23]. Проблема заключается в том, что ММСК составляют очень незначительную часть клеток костного мозга, поэтому необходимо использовать методики фенотипического выделения и наращивания клеток in vitro, чтобы получить достаточные количества ММСК для их реального клинического применения. Поэтому в большинстве клинических исследований для введения пациентам с инфарктом миокарда используются тотальные препараты костного мозга, содержащие и ММСК, и ГСК, и эндотелиальные прогени-торные клетки [24^26]. В результате сложно соотнести положительный эффект (часто весьма значительный) таких трансплантаций с воздействием какого-то определенного типа стволовых клеток. В то же время, имеются свидетельства по улучшению сердечных функций при введении чистых культур ММСК [27, 28].

Несмотря на перечисленные сложности, ММСК считаются чрезвычайно перспективным объектом клеточной терапии, и именно на их всестороннее изучение направлена значительная часть клинических и экспериментальных исследований, что обусловлено рядом обстоятельств. Во-первых, из всех соматических стволовых клеток именно ММСК демонстрируют в экспериментах потенции к дифференцировке в клетки всех трех зародышевых листков: энтодермы, мезодермы и эктодермы [29—31 ], хотя ортодоксальными направлениями дифференцировки ММСК считаются клетки мезенхимного происхождения (остеоциты, адипоциты, хондро-циты, лейомиоциты, теноциты). Во-вторых, фенотип поверхностных антигенов ММСК характеризуется очень низкой иммуногенностью [32, 33]. Кроме того, имеются свидетельства иммуномодуляторных эффектов ММСК на организм реципиента [33]. Благодаря этим свойствам пересадка даже аллогенных клеток приводит к высокой степени включения их в ткани реципиента и длительному сохранению в них [34—36]. В то же время для ММСК не было описано случаев реакции «трансплантат против хозяина», что имеет место при пересадках костного мозга из-за образования иммуноком-петентных клеток, не толерантных к тканям реципиента.

Наконец, ММСК могут быть получены не только из костного мозга, но и из жировой ткани или пуповинной крови [37, 38], а также плаценты [39], сосудов [40], тимуса [41], амниотической жидкости [42]. В большинстве случаев эти способы получения ММСК не столь эффективны, как выделение из костного мозга, однако такие клетки обладают всеми фенотипическими характеристиками ММСК и мультипотентностью. Исходя из сходства фенотипа и дифференцировочного потенциала ММСК из различных источников (список которых с каждым годом все пополняется) можно предполагать, что все эти клетки потенциально могут использоваться в регенеративной терапии кардиологических заболеваний, что, однако, требует отдельных углубленных исследований.

Стволовые клетки сердца (СКС)

В ряде недавних исследований было описано существование в миокарде «взрослых» млекопитающих популяции собственных стволовых клеток. До этого существование стволовых клеток сердца подвергалось сомнениям, поскольку сердечная мышечная ткань считалась полностью постмитотической тканью. Однако в ряде работ было описано присутствие в сердце пула делящихся клеток [43, 44], которые были охарактеризованы по фенотипическим признакам и мультипотентнос-ти как стволовые. Эти клетки могут дифференцироваться в гладкомышечные, эндотелиальные клетки и собственно кардиомиоциты, а трансплантация их мышам с инфарктом миокарда приводит к восстановлению органа. Недавно были выделены стволовые клетки миокарда взрослых мышей, а затем и человека [45]. Клетки экспрессировали маркеры стволовых клеток c-kit, Sea и MDR, обладали высокой пролиферативной активностью и были способны дифференцироваться в кардиомиоциты in vivo и in vitro [46]. Появились первые данные о возможности выделения этих клеток и наращивания их in vitro, при этом не теряется их способность дифференцироваться, что делает возможным использование их в будущем для терапии инфаркта миокарда.

Взаимодействие стволовых/прогениторных клеток с кардиомиоцитами

Итак, на сегодняшний день основные кандидаты для регенеративной клеточной терапии миокарда определены — это ЗСК, ММСК и СКС. При этом применение ЗСК и СКС видится более перспективным [47], однако, их внедрение в клиническую практику пока вызывает множество сложностей. В то же время, ММСК уже прошли многие стадии доклинических испытаний и по ним накоплен достаточно серьезный экспериментальный и клинический опыт. Поэтому в силу дисбаланса в массиве экспериментальных данных механизмы взаимодействия клеточного трансплантата с миокардом рассматриваются далее в основном на примере ММСК.

Что же лежит в основе нормализации сердечной функции при введении стволовых клеток? Очевидно, что в первую очередь — это образование новых функциональных элементов миокарда, кардиомиоцитов, замещающих клетки, погибшие в результате инфаркта. Таким образом, основная задача, возлагаемая на стволовые клетки — дифференцироваться в функционально активные кардиомиоциты и интегрироваться в миокард реципиента. При этом процессы дифференцировки должны жестко регулироваться в соответствии с тканевой нишей, то есть стволовые клетки должны превращаться именно в кардиомиоциты и именно в миокарде. В противном случае очень вероятно возникновение тератом или очагов несоответствующей органу ткани.

Из этого следует, что управление дифференциров-кой стволовой клетки идет в миокарде за счет влияния микроокружения и прямой межклеточной сигнализации, когда соседние клетки регулируют направление дифференцировки за счет межклеточной сигнализации.

В этой связи, в последнее время все большее количество исследований посвящено взаимодействию стволовых и прогениторных клеток с кардиомиоцитами через прямые контакты клеточных мембран, обмен цитоплазматическими сигналами и слияние клеток. Очевидно, что для полноценной регенерации миокарда стволовые клетки должны не просто дифференцироваться в кардиомиоциты, а еще и полностью интегрироваться в миокард с образованием соответствующих электрических и цитоплазматических связей. Иначе даже дифференцировавшиеся в кардиомиоциты клетки, не включившись в единый функциональный синцитий сердечной мышцы, не только не улучшат функционирование поврежденного миокарда, но могут стать источниками аритмий [48^ 50], угрожающих жизни реципиента.

Исходя из этого, логично предположить, что процессы дифференцировки стволовых/прогениторных клеток идут параллельно с образованием устойчивых связей с кардиомиоцитами хозяина, более того, именно образование таких контактов может служить сигналом для начала специализации недифференцированной клетки. Косвенно это подтверждается рядом наблюдений за ми-областами, которые, будучи пересаженными в сердце, могут оставаться несопряженными с кардиомиоцитами реципиента, несмотря на наличие всех фенотипических признаков сократительной клетки [51].

В настоящее время экспериментальное подтверждение получили три основных типа взаимодействия стволовых/прогениторных клеток с кардиомиоцитами, в той или иной степени связанные с трансдифференциров-кой. Это слияние клеток, образование межклеточных контактов классического типа (щелевые «дар» контакты) и недавно открытый тип взаимодействия — туннельные нанотрубочки.

Щелевые контакты

Щелевые контакты являются основным типом взаимодействия кардиомиоцитов в миокарде. Именно за счет щелевых контактов миоциты образуют единую электрически сопряженную сеть в отделах сердца, любое нарушение в которой приводит к возникновению аритмий вплоть до фибрилляции. Нарушение проводимости в миокарде является главным негативным последствием ишемических поражений и формирования рубцовой ткани после инфаркта, и, следовательно, восстановление сопряженности кардиомиоцитов является доминирующей целью регенеративной клеточной терапии. Однако, на сегодняшний момент множество исследований показывает, что клеточные трансплантации могут сами провоцировать аритмии. Одним из предполагаемых механизмов этого явления считают как раз недостаточное образование щелевых контактов между трансплантированными клетками и кардиомиоцитами реципиента.

Основным структурным белком щелевых контактов в миокарде является коннексин 43 (Сх43), экспрессия и сборка которого сложно регулируются в зависимости от локализации в миокарде и функционального состояния клетки. Показано, что повышение Сх43 за счет овер-экспрессии снижает аритмию в системе, моделирующей трансплантацию скелетных миобластов в миокард [52]. Коннексин 43 напрямую усиливает межклеточную коммуникацию между миобластами и взрослыми крысиными кардиомиоцитами, при этом увеличивается количество щелевых контактов и опосредованная ими проводимость между клетками [53]. Интересно, что скелетные миобласты сами по себе обладают определенным уровнем экспрессии Сх43 [54], специфичного для кардиомиоцитов, однако после прекращения деления и дифференцировки миобластов в мышечные трубочки, этот белок исчезает. Таким образом, дифференцировавшись, скелетный миобласт может терять функциональную связь с клетками миокарда [55—57]. Впрочем, возможно, такая потеря экспрессии Сх43 и уменьшение числа щелевых контактов не является обязательным событием, а происходит из-за стресса при трансплантации, повреждения клеток вокруг трансплантата и т.д. В частности, показано, что сокультивирование с кардиомиоцитами усиливает экспрессию Сх43 в миобластах [58]. При этом между кардиомиоцитами и миобластами образуются функциональные контакты, появляется электропроводимость и возможен обмен различными медиаторами, включая Са2+ [57, 58].

Многих проблем, связанных с интеграцией в сердце таких достаточно специализированных клеток, как миобласты, можно избежать, используя стволовые клетки, поскольку они более пластичны и могут дифференцироваться в кардиомиоциты. Возможность формирования межклеточных контактов на основе Сх43 между кардиомиоцитами и различными типами стволовых клеток также была показана как in vivo, так и в моделях сокультивирования.

Например, ММСК способны связываться как друг с другом через Сх43 и Сх40, так и с другими сокультиви-руемыми клетками [59], в частности культивируемыми взрослыми кардиомиоцитами. В работе V. Valiunas и соавт. (2004) показано, что человеческие ММСК формируют гетеромерные каналы из двух типов коннек-синов с кардиомиоцитами собаки, причем эти контакты обеспечивают достаточное электрофизиологическое сопряжение клеток [59].

Более того, человеческие ММСК оказались способны восстанавливать проводимость между двумя отдельными полями культивируемых кардиомиоцитов [60]. В монослое сокращающихся неонатальных кардиомиоцитов крысы, физически разделенных на два поля и сокращающихся асинхронно, при добавлении ММСК восстанавливалась электрическая проводимость и сокращение синхронизировалось. Обнаружено, что ММСК, помещенные к двум группам кардиомиоцитов, образовывали функциональные щелевые контакты как между собой, так и с кардиомиоцитами. При этом через ММСК происходила передача импульса за счет ионных токов через коннексиновые каналы, хотя и более медленная, чем в кардиомиоцитах. Недавняя работа М. Gallo и соавт. (2007) подтверждает наличие щелевых контактов на основе Сх43 в совместной культуре ММСК и кардиомиоцитов, причем этот кардиоспецифичный коннексин выявлялся как в контактах ММСК/ММСК, так и в контактах ММСК/кардиомиоцит [61 ]. При этом между клетками наблюдались потенциал-зависимые кальциевые сигналы, однако, сами ММСК не обладали способностью к сокращению, и в них не выявлялись миофибриллы. Таким образом, формирование щелевых контактов и электропроводимость между кардиомиоцитами и стволовы-ми/прогениторными клетками выявляются многими исследователями, однако дифференцировка стволовых клеток в кардиомиоциты зависит, вероятно, и от других механизмов взаимодействия, таких, как слияние клеток или образование нанотрубочек.

Слияние клеток

Слияние клеток, то есть объединение плазматических мембран и генетического материала, является распространенным событием в ходе развития и функционирования многоклеточного организма, начиная от процесса оплодотворения яйцеклетки до образования многоядерного синцития мышечной ткани. В последнее время появился ряд работ, демонстрирующих возможность слияния стволовых клеток с нейральными предшественниками [62, 63], гепатоцитами и кардиомиоцитами [64]. Трансплантированные прогениторные клетки сердца тоже не только дифференцируются в кардиомиоциты, но и сливаются с ними в сердце, возвращая им способность к пролиферации [44]. Более того, показана возможность спонтанного слияния неонатальных кардиомиоцитов с различными типами стволовых и прогениторных клеток: эндотелиальными клетками пуповинной вены (HUVEC), мезенхимальными и гемопоэтическими клетками костного мозга, эндотелиальными прогениторны-ми клетками [65]. При сокультивировании кардиомиоцитов in vitro с HUVEC или фибробластами сердца происходило их слияние с образованием гетерокарио-нов, в которых наблюдалась экспрессия как маркеров кардиомиоцитов, так и клетки-партнера. Однако затем фенотип кардиомиоцита начинал преобладать. При слиянии непролиферирующие кардиомиоциты возвращались в клеточный цикл и начинали экспрессировать Ki-67 — маркер пролиферирующих клеток [65].

Аналогичные данные получены при исследовании экспрессии мРНК кардиоспецифичного р-миозина в совместной культуре неонатальных крысиных кардиомиоцитов и человеческих мононуклеаров костного мозга [64]. Клетки исследовались методом ПЦР отдельно взятой клетки (single-cell PCR), что позволило отличать трансдифференцировку клеток от слияния. Было показано, что около 6% человеческих клеток экспресна, то есть появление кардиофенотипа индуцировалось слиянием. Однако около 9% клеток экспрессировало истинная трансдифференцировка. Похожие данные получены на гемопоэтических клетках [66, 67]. В этих исследованиях появление кардиомиоцитов из стволовых клеток путем слияния было либо очень редким явлением [66], либо происходило наравне с истинной трансдифференцировкой, не связанной со слиянием [67].

Таким образом, несмотря на появление значительного числа исследований по слиянию стволовых клеток с кардиомиоцитами, этот механизм нельзя считать основным путем регенерации миокарда при клеточных трансплантациях, поскольку многие современные работы указывают на наличие дифференцировочной пластичности стволовых клеток, не основанной на слиянии.

Подняться вверх сайта