Поиск Кабинет

Создание рекомбинантного аденовируса, кодирующего кодон-оптимизированный ген дисферлина, и анализ экспрессии рекомбинантного белка в культуре клеток in vitro

Гены & Клетки: Том VII, №3, 2012 год, стр.: 25-28

 

Авторы

Старостина И.Г., Соловьева В.В., Шевченко К.Г., Деев Р.В., Исаев А.А., Ризванов А.А.

ДЛЯ ТОГО ЧТОБЫ СКАЧАТЬ СТАТЬЮ В ФОРМАТЕ PDF ВАМ НЕОБХОДИМО АВТОРИЗОВАТЬСЯ, ЛИБО ЗАРЕГИСТРИРОВАТЬСЯ

Дисферлинопатии человека относят к нейромышечным заболеваниям, связанным с нарушением экспрессии и/или функции белка дисферлина (dystrophy-associated fer-1-like, DYSF) в скелетной мышце, что обусловлено мутациями в гене dysf. Вследствие большого размера кодоноптимизированного гена dysf (6243 п.н.) для создания генетических конструкций подходят аденовирусные векторы, которые способны доставлять большой объем рекомбинантной генетической информации как в делящиеся, так и в неделящиеся клетки, а также обеспечивают высокий уровень экспрессии трансгенов.

Нами получен рекомбинантный аденовирус серотипа 5, кодирующий кодон-оптимизированный ген дисферлина человека (Ad5-Dysf) и проведен анализ экспрессии рекомбинантного белка in vitro в культуре клеток HEK-293T.

Дисферлинопатии относят к нейромышечным заболеваниям человека аутосомно-рецессивного типа наследования при которых происходит нарушение экспрессии и(или) функции белка дисферлина в скелетной мышце [1]. Дисферлин – трансмембранный белок, который содержит семь С2 доменов и состоит из 2080 аминокислот (231кДа) [2, 3]. Мутации в любом из пяти С2 доменах дисферлина (C2A, B, D, E и G) могут привести к формированию аномальной трёхмерной структуры белка или к его деградации, что служит причиной развития мышечной дистрофии [4, 5]. С2A области дисферлина связывают фосфолипиды Ca2+-зависимым способом [6], что, по-видимому, связано с ролью белка в восстановлении мембран скелетных мышц [7, 8].

Мутациями в гене dysf, находящимся в хромосоме 2p12-14, обусловлено развитие конечностно-поясной миодистрофии типа 2В и миопатии Миоши [9]. Ген dysf охватывает более 150 тыс. пар нуклеотидов (т.п.н.) геномной ДНК и состоит из 55 экзонов [10]. На интронном уровне обнаружено более 300 различных мутаций, большинство из которых представляют собой однонуклеотидные полиморфизмы [11]<>/sup. Возможность восстановления дефектного белка мышц путем введения в клетку функционального гена дикого типа является перспективным методом генной терапии мышечных дистрофий.

В настоящее время генную терапию на основе аденовирусов считают возможным методом лечения различных заболеваний человека [12], в том числе мышечных дистрофий [13, 14]. Аденовирусные векторы способны инфицировать широкий спектр клеток человека, обеспечивая высокий уровень экспрессии трансгена, не интегрируются в геном клетки хозяина (онкологическая безопасность) и могут переносить большие фрагменты рекомбинантной ДНК (до 7,5 т.п.н.) [15].

Целью работы явилось создание рекомбинантного аденовируса, кодирующего кодон-оптимизированный ген дисферлина человека, и анализ экспрессии рекомбинантного белка в культуре клеток in vitro. Выбор аденовирусного вектора обусловлен большим размером кодон-оптимизированной нуклеотидной последовательности гена dysf.

Материал и методы

В работе использовались кодон-оптимизированный ген дисферлина, клонированный в плазмидный вектор-донор pDONR221 (Invitrogen, США) и аденовирусный плазмидный экспрессионный векторреципиент pAd/CMV/V5-DEST (Invitrogen, США). Для оптимизации кодонного состава гена дисферлина dysf использовали алгоритм OptimumGene, который учитывает различные факторы, влияющие на уровни экспрессии генов, такие как смещение кодонов, GC-состав, содержание CpG-динуклеотидов, вторичную структуру мРНК, тандемные повторы, сайты рестрикции, которые могут помешать клонированию, преждевременные сайты полиаденилирования, дополнительные минорные сайты связывания с рибосомой. В качестве матрицы для кодонной оптимизации была взята нуклеотидная последовательность мРНК гена dysf (GeneBank # NM_003494). Синтез de novo оптимизированной нуклеотидной последовательности гена dysf осуществляла фирма GenScript (США).

Рекомбинационное клонирование между вектором-донором pDONR221 со вставкой гена dysf и вектором-реципиентом pAd/CMV/V5-DEST проводили по технологии Gateway® (Invitrogen, США) с помощью LR-рекомбинации по методике, рекомендуемой производителем. Полученная таким образом рекомбинантная плазмида, кодирующая аденовирусный геном со вставкой гена dysf (pAd-DYSF), позволяет получить рекомбинантный аденовирус, содержащий необходимый нам трансген.

Трансформацию компетентных клеток Escherichia coli штамма TOP10 (Invitrogen, США) плазмидой pAd-DYSF проводили согласно стандартной схеме с применением CaCl2 метода [16]. Выросшие колонии проверяли на наличие адевирусного вектора со вставкой гена dysf (pAd-Dysf) с помощью ПЦР-скринига по стандартной методике [17] с использованием геноспецифичных праймеров.

Дальнейшую работу проводили с ПЦР позитивными колониями, содержащими рекомбинантный аденовирусный вектор с интересующей нас вставкой. Плазмидную ДНК выделяли с помощью набора QIAfilter Plasmid Midi Purification Kit (QIAGEN, США) по методике, рекомендуемой производителем. Правильность сборки генетической конструкции проверяли ДНК-секвенированием, результаты которого обрабатывали с помощью программы SeqScanner (Applied Biosystems, США) и программного пакета Lasergene 5.03 (программа SeqMan, DNA STAR, Inc., США).

Для анализа экспрессии белка дисферлина использовали клеточную линию HEK-293T (ATCC, CRL-11268), которую трансфицировали кольцевой плазмидой pAd-Dysf с использованием трансфекционного агента TurboFect (Fermentas Inc., Канада). Иммунофлуоресцентный анализ проводили с использованием первичных поликлональных антител кролика к дисферлину (Abcam plc., #ab15108, Великобритания), вторичных антител осла к иммуноглобулину класса G кроликa, конъюгированных с флуоресцентной меткой Alexa-555 (Invitrogen, #A31572, США), и флуоресцентного красителя DAPI (4’,6-diamidino-2-phenylindole; Invitrogen, США). Результаты анализировали на инвертированном флуоресцентном микроскопе AxioOberver.Z1 (Carl Zeiss, Германия). Электрофорез белков лизатов клеток HEK-293Т, трансфицированных плазмидой pAd-Dysf, в полиакриламидном геле проводили по методу Лэммли в денатурирующих условиях (SDS-PAGE) [18]. Вестерн-блот анализ белков проводили с применением первичных поликлональных антител кролика к дисферлину (Abcam plc., #ab15108, Великобритания) и вторичных поликлональных антител козы к иммуноглобулину класса G кролика, конъюгированные с пероксидазой хрена (Sigma, #A6154, США). Визуализацию иммунного преципитата проводили с помощью набора для хемилюминесцентной детекции белка Amersham™ ECL™ Prime Western Blotting Detection Reagent (GE Healthcare Bio-Sciences AB, #RPN2232). Детекцию люминесценции проводили на приборе ChemiDoc™ XRS+ System (Bio-Rad, Сингапур).

Для получения рекомбинантного аденовируса Ad5-Dysf полученный аденовирусный плазмидный вектор pAd-Dysf переводили из кольцевой в линейную форму с помощью рестрикции ферментом PacI (Fermentas Inc., Канада). Расщепление вектора способствует взаимодействию левого и правого инвертированных концевых повторов и удалению бактериальных последовательностей (а именно, участка начала репликации pUC и гена устойчивости к ампициллину). Сборка и репликация рекомбинантного аденовируса происходит в клетках линии HEK-293A (Invitrogen, США) – иммортализированная линия первичных человеческих эмбриональных клеток почки, трансформированные фрагментами ДНК аденовируса серотипа 5. Клеточная линия содержит стабильно интегрированную в геном копию гена e1, который экспрессирует белки Е1, необходимые для получения рекомбинантного аденовируса [19–20]. Трансфекцию клеток линии НЕК-293А линейной плазмидой pAd-Dysf проводили трансфекционным агентом TurboFect (Fermentas Inc., Канада) по методике, рекомендуемой производителем. Вирусный сток был получен путем криолиза (2–3 циклов замораживания/оттаивания) клеточной суспензии с последующим центрифугированием для удаления обломков клеток.

Результаты и обсуждение

Одним из методов усиления экспрессии рекомбинантных генов и биосинтеза терапевтических белков является кодонная оптимизация кодирующей последовательности. Кодонная оптимизация основана на вырожденности генетического кода, при этом в качестве оптимальных кодонов используют наиболее часто встречающиеся синонимические кодоны вырожденного генетического кода. Чем выше частота встречаемости того или иного кодона, используемого для кодирования аминокислоты в организме, тем с большей скоростью он будет транслироваться рибосомами вследствие высокой внутриклеточной концентрации тРНК, узнающей такой кодон. Помимо оптимизации трансляции за счет использования определенных нуклеотидных триплетов, в процессе кодонной оптимизации можно нарушать последовательности нуклеотидов структуры стеблевой петли (англ. Stem-loop), влияющие на стабильность мРНК и связывание с рибосомой, потенциальные сайты альтернативного сплайсинга, снижающие выход целевых полноразмерных мРНК, и др. Таким образом кодонная оптимизация повышает эффективность трансляции мРНК в полипептиды. Оптимизация кодонного состава реализуется с помощью сайт направленного мутагенеза или химического синтеза нуклеотидной последовательности de novo.

Дикий тип нуклеотидной последовательности кодирующей части гена dysf состоит из 6243 п.н. и содержит тандем редких кодонов, которые могут остановить трансляцию или снизить ее эффективность. При оптимизации кодонного состава дикого типа гена dysf был улучшен индекс адаптации кодонов CAI (англ. Codon Adaptation Index) с 0,83 до 0,88. Для увеличения стабильности мРНК был оптимизирован GC-состав и удалены протяженные участки с высоким сожержанием GC-пар. Кроме того, процесс оптимизации удалил потенциальные цис-действующие сайты. Таким образом, получена плазмида (pDONR221-Dysf), кодирующая оптимизированную по кодонам последовательность гена dysf. В результате кодонной оптимизации аминокислотная последовательность дисферлина не изменилась и составила 2080 аминокислотных остатков.

Субклонированием гена дисферлина из плазмиды pDONR221-Dysf в вектор pAd/CMV/V5-DEST получена экспрессионная плазмидная конструкция pAd-Dysf, которую трансформировали в компетентные клетки E. coli TOP10. В дальнейшей работе ПЦР-позитивные колонии использовали для выделения плазмидной ДНК pAd-Dysf. Правильность сборки полученной генетической конструкции проверяли секвенированием. В результате анализа сиквенсных хроматограмм, полученные нуклеотидные последовательности идентифицированы как фрагменты кодон-оптимизированной последовательности гена dysf. Было определено 23 фрагмента, получено полное покрытие открытой рамки считывания гена dysf. Анализ нуклеотидных последовательностей показал отсутствие мутаций на протяжении всей нуклеотидной последовательности гена дисферлина. После трансфекции клеток линии HEK-293T полученной генетической конструкцией, анализ экспрессии рекомбинантного белка проводили с помощью иммунофлуоресцентного и вестерн-блот анализов.

Иммунофлуоресцентный анализ выявил положительную реакцию с поликлональными антителами кролика к дисферлину (рис. 1). Вестерн-блот анализ белковых лизатов клеток HEK-293Т показал наличие выраженной специфичной полосы иммунопреципитата, соответствующей ожидаемой молекулярной массе белка дисферлина (231 кДа) (рис. 2). Таким образом, показана экспрессия белка дисферлина полученной генетической конструкцией pAd-Dysf.

С помощью рестрикции ферментом PacI была получена линейная плазмида pAd-Dysf, которой трансфицировали клетки HEK-293A для сборки и репликации аденовируса. После получения неочищенного вирусного лизата для повышения вирусного титра проводили амплификацию аденовируса pAd5-Dysf в клетках HEK-293A. Через 2 дня после заражения в культуре клеток наблюдался цитопатический эффект, что указывает на то, что клетки продуцируют вирусные частицы.

Таким образом, нами получен рекомбинантный аденовирус серотипа 5, кодирующий кодоноптимизированный ген дисферлина человека (Ad5-Dysf). С помощью иммунологических методов показана эффективная экспрессия рекомбинантного белка дисферлина in vitro. Полученные плазмидные и вирусные конструкции будут использованы в дальнейших исследованиях по разработке методов генной терапии дисферлинопатии человека.

Подняться вверх сайта