Поиск Кабинет

Особенности регенерации костной ткани при огнестрельных переломах длинных трубчатых костей человека.

Гены & Клетки: Том IX, №4, 2014 год, стр.: 110-115

 

Авторы

Гололобов В.Г.

ДЛЯ ТОГО ЧТОБЫ СКАЧАТЬ СТАТЬЮ В ФОРМАТЕ PDF ВАМ НЕОБХОДИМО АВТОРИЗОВАТЬСЯ, ЛИБО ЗАРЕГИСТРИРОВАТЬСЯ

Цель исследования – гистологическое (световая и электронная микроскопия) изучение регенерационного остеогенеза после огнестрельных переломов костей конечностей у человека. Проведен анализ биопсийного материала (осколки, участки отломков и тканей между отломками), взятого у 9 раненых при проводимой исключительно по показаниям хирургической обработке огнестрельных переломов длинных трубчатых костей. Сроки от момента травмы – 1, 2, 3, 4, 5, 14, 23, 34 сут. Показано, что при регенерации костной ткани новообразованные кровеносные сосуды транспортируют остеогенные камбиальные клетки в зону перелома, что оптимизирует остеогенез. Выявленный регенерационный эндооссальный остеогенез способствует формированию реконструированных остеонов, минуя стадию развития ретикулофиброзной костной ткани. Сохранившиеся остеогенные элементы осколков, привнесенные в них при реваскуляризации клетки с остеогенным потенциалом способны продуцировать костную ткань. Такие фрагменты являются дополнительным и существенным источником образования костного регенерата. Они рассмотрены как посттравматическая органная культура in vivo. Отмечена различная степень развития регенераторного процесса от проксимального и дистального отломков. Ультраструктура остеобластов, остеоцитов и межклеточного вещества позволила судить об интенсивности процесса костеобразования. Полученные результаты гистологического исследования учтены клиницистами при разработке мероприятий при лечении пациентов.

Введение

Проблема реактивности и регенерации костной ткани после огнестрельных переломов является весьма актуальной, она входит в сферу безусловных интересов теоретической остеогистологии [1–3], имеет прямое отношение для разработки новых лечебных мероприятий клиницистами [4–7]. Стало очевидным, что повысилась частота военных противостояний и террористических актов, происходит совершенствование оружия, вызывающего тяжелые повреждения у раненых [8–11]. Специалисты-травматологи отмечают тенденцию роста переломов трубчатых костей верхних и нижних конечностей (до 70% и более) в структуре огнестрельных травм органов опорно-двигательной системы [12]. Выявленные закономерности посттравматической регенерации костной ткани [13], данные об участии в этом процессе детерминированных потомков остеогенных клеток, мультипотентных мезенхимальных стромальных клеток (ММСК) костного мозга и периваскулярной локализации [3, 14–16], положения о гистогенетических основах раневого процесса [17, 18] служили методологическими принципами для гистологического анализа заживления костных ран. Проведено исследование с целью гистологической характеристики и выявления особенностей регенерационного остеогистогенеза при заживлении огнестрельных переломов костей конечностей у человека.

Материал и методы

Получение тканевого материала после огнестрельных переломов осуществлялось при непосредственном взаимодействии с сотрудниками кафедры военной травматологии и ортопедии академии в рамках выполнения диссертационных работ (заключения этического комитета ВМедА им. С.М. Кирова: протоколы № 121 от 31.01.2012 и № 126 от 19.06.2012). Переломы были получены в различных обстоятельствах, включая криминальные, некоторые переломы были множественными. Пострадавшим оказывалась специализированная медицинская помощь в хирургических клиниках Академии, далее раненые проходили реабилитацию в лечебных учреждениях по месту жительства. В связи с этим возникали определенные ограничения для получения стандартизированных биоптатов, а также материала на поздних сроках от момента повреждения.

Для гистологического изучения производилось взятие осколков, участков отломков и тканей между отломками, удаленных у 9 раненых в условиях операционной в процессе проводимой исключительно по показаниям хирургической обработки. Материал по локализации перелома и срокам от момента травмы взят из костных ран: бедренных костей – через 1, 5, 14 сут.; большеберцовых костей – через 1, 3, 4, 5, 23, 34 сут.; лучевой и локтевой костей – через 2 сут. У одного пострадавшего биоптаты брались дважды в пределах указанных сроков от момента повреждения. Проводилась гистологическая обработка материала, содержащего костную ткань: фиксация в 12% растворе нейтрального формалина, декальцинация в жидкости Эбнера, дегидратация в спиртах возрастающей концентрации, заключение в парафин, изготовление срезов толщиной около 10 мкм. Срезы окрашивали гематоксилином и эозином, бисмарк коричневым пикроиндигокармином по Румянцеву и Овчарову. Для более детального изучения биоптатов использовался метод трансмиссионной электронной микроскопии (ТЭМ). Материал фиксировали в 2,5% растворе глутарового альдегида на 0,1 М фосфатном буфере (ph – 7,4) в течение 12 ч. при 4°С, дофиксировали в 1% растворе тетраоксида осмия в течение 1,5 ч., промывали в фосфатном буфере (ph – 7,4), обезвоживали в спиртах – 60, 70, 80, 90, 96, 100%, заливали в смесь эпон-аралдит. Из полученных блоков готовили полутонкие срезы толщиной около 1,5 мкм, которые окрашивали 1% раствором толуидинового синего, импрегнировали 0,5% раствором протаргола по Бодиану. Ультратонкие срезы толщиной 0,1– 0,2 мкм получали на ультратоме LKB-V (Швеция), контрастировали в 2,5% растворе уранилацетата и 0,3% растворе цитрата свинца, изучали при помощи электронного микроскопа JEM 100-СХ (Япония) при ускоряющем напряжении 80 КВ.

Результаты и обсуждение

Огнестрельные переломы длинных трубчатых костей причиняли обширные разрушения костной и других тканей, характеризовались образованием большого числа костных осколков. Они различались по размерам, форме, содержанию в своем составе тканевых структур, свойственных кости как органу. Часть из них представляла собой свободные фрагменты диафиза с надкостницей, включающие все слои компактного вещества и эндост, некоторые являлись кусочками остеонного слоя с участками наружных или внутренних окружающих пластинок. Через сутки после ранения часть осколков находилась в раневом канале и за его пределами в прилегающих тканях, другие располагались у краев отломков, окруженные клетками гематомы (рис. 1).

В отломке визуализировались отдельные остеоциты, клетки со сниженной способностью воспринимать гистологические красители, пикнотизированные элементы, пустые остеоцитарные лакуны, а также трещины в матриксе. В каналах остеонов кровеносные сосуды, окружающие их тканевые структуры пребывали в состоянии различной степени деструкции. 2–3 сут. после ранения. В межклеточном веществе осколков и отломков наблюдались территории в виде пятен с нечеткими границами, неравномерно воспринимавшие гистологические красители. Изменения тинкториальных свойств костного матрикса отмечались в остеонных и вставочных пластинках, вокруг пустых полостей, где ранее залегали тела остеоцитов. При трактовке альтеративных изменений костной ткани, вероятно, следует учесть мнение о том, что при ее повреждении происходит потеря матриксных металлопротеиназ, коннексинов, приводящая к остеоцитарным лакунарно-канальциевым дефектам, дезорганизации коллагена, кристаллов гидроксиапатита и клеточно-матриксных контактов, снижению трещиноустойчивости кости [19–21]. Указанные состояния остеоцитов и матрикса осколков не являются показателем их окончательной гибели. Возможность высвобождения из межклеточного вещества, особенно при его деминерализации, факторов роста, неколлагеновых протеинов, митогенных субстанций [22–24] способствует индуцированному остеогенезу, ее допустимо рассматривать как реактивные изменения ткани, предшествующие регенерации. В межотломковом биоптате, полученном на 4 сут. после перелома, показан костный осколок (рис. 2), к которому прилегают нити фибрина, остатки детрита и растущая рыхлая соединительная ткань. Осколок лишен большей части остеоцитов, но в некоторых лакунах между остеонными и вставочными пластинками клетки сохранились, сосуды в остеонах не определялись. Вышеназванные изменения костной ткани соответствовали фазе посттравматического некроза.

5 сут. травмы. Разрастающаяся в межотломковой зоне реактивно измененная рыхлая соединительная ткань сходна по строению с грануляционной тканью. Основным клеточным диффероном в ее составе являлся фибробластический. Большая часть фибробластов имела цитоплазму с выраженной базофилией, светлые ядра, в которых содержались 1–3 крупных ядрышка, отмечались двуядерные и делящиеся клетки. Между фибробластами обнаруживались пучки коллагеновых волокон и аморфное вещество. Ультраструктура фибробластов свидетельствовала о внутридифферонной гетероморфии. Кроме клеток фибробластического дифферона встречались макрофаги, отдельные лимфоциты и плазмоциты. Отчетливо определялись вновь образованные кровеносные капилляры, рост которых осуществлялся за счет реорганизации базальной мембраны, пролиферации и миграции эндотелиоцитов [25, 26] от неповрежденных сосудов микроциркуляторного русла, что являлось проявлением вазоформативных тканевых свойств эндотелия [27].

14 сут. после ранения. У краев отломков и осколков, в трещинах, каналах остеонов, где костные пластинки и остеоциты повреждены, выявлялись остеокласты (рис. 3).

Костные макрофаги резорбировали деструктивный матрикс, что приводило к изменению размеров и формы полостей, в которые они внедрились. Считается, что пусковая роль в этом процессе связана с остеоцитарной сигнализацией [28, 29]. Активация остеокластов инициирует ангиогенез [30, 31], способствующий транспорту в область костной раны клеток с остеогенным потенциалом, включая ММСК, а также эндотелиальных клеток-предшественников [32], содействующих неоваскулогенезу и оптимизации остеорепарации. В указанных выше полостях регистрировались кровеносные сосуды, вросшие из грануляционной ткани с привнесенными индуцибельными к остеогенезу и детерминированными остеогенными клетками, способными к дифференцировке в остеобласты (рис. 4). Последние адгезировались на поверхности сохранившихся пластинок, синтезировали межклеточное вещество, дифференцировались в остеоциты, формировали de novo костные пластинки вокруг сосудов, создавая генерации реконструированных остеонов. Посттравматическое развитие пластинчатой костной ткани на основе предсуществующей кости (рис. 5), минуя стадию образования ретикулофиброзной костной ткани, являлось проявлением составляющей закономерного восстановительного процесса – регенерационного эндооссального остеогистогенеза [33].



23 сут. после травмы. Костные осколки, окруженные реактивно измененной рыхлой соединительной тканью, обеспечивались оксигенацией и нутриционной поддержкой за счет диффузии веществ из сосудов, которые врастали в надкостницу (если она не утрачена) и каналы остеонов. В этих условиях сохранившие жизнеспособность остеогенные элементы осколка, а также доставленные за счет реваскуляризации ММСК дифференцировались в клетки остеобластического ряда. Остеобласты, выполняя присущую им функцию костеобразования, формировали тонкие балки ретикулофиброзной костной ткани, отходящие от поверхности осколка (рис. 6). Электронно-микроскопическое изображение остеобласта регенерата весьма наглядно отражает его активный морфофункциональный профиль (рис. 7).

Он содержит овальное эксцентрично лежащее ядро с крупным ядрышком, в ядре отчетливо преобладает эухроматин, гетерохроматин расположен маргинально у внутренней мембраны нуклеолеммы, очевидны многочисленные ядерные поры. Канальцы и цистерны гранулярной эндоплазматической сети расширены, занимают большую часть клетки, заполнены электронно-плотным хлопьевидным материалом. На границе остеобласта с экстрацеллюлярным веществом присутствуют крупные везикулы разной формы, некоторые из них имеют перетяжки, напоминая форму песочных часов. Большая часть из них находится в гиалоплазме у цитолеммы – предэкструзивное состояние. Другие пузырьки с содержимым определялись за пределами клеток. Экструзия матриксных везикул представляет собой секрецию белковых компонентов для формирования межклеточного вещества регенерирующей костной ткани. 34 сутки после травмы. Были отмечены различия в степени «продвинутости» регенерационного остеогистогенеза от проксимального и дистального отломков, связанные с резко ухудшенными условиями кровообращения, иннервации дистальной части конечности раненых. У края дистального отломка все еще преобладала остеокластическая резорбция, тем не менее в перинекротической области со стороны его надкостницы регистрировался периостальный остеогистогенез. Образующийся же интермедиарный регенерат от проксимального отломка представлял собой массивы перекладин зрелой ретикулофиброзной костной ткани, зона ее формирования интенсивно кровоснабжена (рис. 8).

Анализируя ультраструктуру клеток регенерата, состояние межклеточного вещества, элементы на рисунке 9 идентифицированы как дифференцирующиеся остеоциты. Обращает на себя внимание тот факт, что при относительно небольшом сроке после ранения процесс минерализации органического компонента имел четкое электронно-микроскопическое подтверждение. По мере увеличения объема интермедиарного регенерата, роста новообразованной костной ткани, продуцируемой осколками, происходит анастомозирование перекладин костной ткани и формирование общего регенерата, в состав которого инкорпорированы костные фрагменты.

Таким образом, примененные методы исследования прижизненного материала, возможность сопоставления гистологических данных с клиническими наблюдениями [12, 13, 34–36] позволили получить представления об особенностях регенерационного остеогистогенеза при заживлении огнестрельных переломов трубчатых костей у человека. Неоваскулогенез при регенерации костной ткани не только обеспечивает метаболизм этого процесса, но также растущие сосуды пополняли популяцию клеток, способных к дифференцировке в остеобласты, что особенно необходимо при резком дефиците камбиальных элементов в крупных дефектах кости. Регенерационный эндооссальный остеогистогенез, при котором не образуется провизорная костная ткань, требующая дальнейшей ремоделяции, оптимизирует восстановление кости. Реваскуляризация отломков и осколков в значительной мере определяла дальнейшую их судьбу в костной ране, это – существенный процесс в русле посттравматической остеорепарации. Сохранившие жизнеспособность остеогенные элементы костных фрагментов способны к продукции костной ткани, тем самым включались в состав общего тканевого регенерата, значительно способствуя воссозданию кости как органа. Подобные осколки расценивались как посттравматическая органная культура in vivo, которая проявляла гистотипический рост, что согласуется с известными закономерностями [37]. Клеточные и тканевые реакции свидетельствовали о развертывании регенераторной фазы заживления костной раны. Не утратило своего значения положение о том, что, в каждой реакции ткани на внешнее воздействие отражены не только действующие в данный момент причины, но и пройденные этапы онто- и филогенеза [38].

Полученные результаты гистологического исследования учтены клиницистами при разработке программы хирургической обработки огнестрельной костной раны. Она реализуется при медицинской реабилитации раненых с огнестрельными переломами длинных трубчатых костей, является основой для внедрения новых способов лечения, позволяющих сохранить функции тканей и органов опорно-двигательной системы при оказании помощи пострадавшим [39–42]. Следует отметить, что экономическая эффективность реабилитации раненых выражается не только стоимостными значениями, но и этической целесообразностью [43, 44], в соответствии с которой каждый гражданин имеет право на гарантированную государством доступную качественную медицинскую помощь и достойное положение в обществе.

Подняться вверх сайта